Tribhuvan University

Amrit Campus

An Internship Report
On
“ DevOps Engineer ”

At
Smart Ideas Pvt. Ltd (Hamro Patro)

Submitted to :
Department of Computer Science and Information Technology

In the partial fulfillment of the requirements for the Bachelor’s Degree in Information

Technology awarded by 10ST, Tribhuvan University

Submitted by
Saurav Karki (T.U. Exam Roll No. BIT 362/077)

Under the Supervision of

Janak Raj Joshi

MENTOR’S RECOMMENDATION

I hereby recommend that this internship report prepared by Saurav Karki (TU Roll NO:
BIT 362/077) from Amrit Campus, Thamel, under my mentorship entitled “DevOps
Engineer”, in partial fulfillment of the requirement for the degree of Bachelor in

Information Technology of Tribhuvan University, be processed for evaluation.

Mr. Shital Kumar Nyaupane

Mentor
Smart Ideas Pvt.Ltd (Hamro Patro)

Sifal, Kathmandu

SUPERVISOR’S RECOMMENDATION

I hereby recommend that the report entitled “An Internship Report on DevOps Engineer
at Smart Ideas Pvt.Ltd”, prepared under my supervision by Saurav Karki in partial
fulfillment of the requirements for the degree of Bachelor in Information Technology of

Tribhuvan University, be processed for evaluation.

Janak Raj Joshi

Supervisor

Department of Computer Science and Information Technology
Amrit Campus

Lekhnath Marg, Thamel

LETTER OF APPROVAL

This is to certify that this internship report prepared by Saurav Karki entitled “An
Internship Report On DevOps Engineer at Smart Ideas Pvt.Ltd” has been
submitted to the Department of Information Technology for acceptance in partial
fulfillment of the requirements for the degree of Bachelors in Information
Technology. In our opinion, it is satisfactory in the scope and quality as an internship

for the required degree.

External Examiner

Asst. Prof. Dhirendra Kumar Yadav
Project Coordinator

Department of CSIT

ACKNOWLEDGEMENT

I would like to express my deepest appreciation to all those who provided me with the
possibility to complete this internship report. Special gratitude to my supervisor Janak

Raj Joshi for the complete support and guidance throughout the internship period.

Also, I would like to express my special gratitude to our Program Coordinator, Akkal
Bista and administrative staff whose all time encouragement helped me coordinate the

internship tasks systematically.

I would like to express my sincere thanks to mentors Mr. Shital Kumar Nyaupane, Mr.
Paritosh Bhattarai and Mr. Saurab Tharu of Smart Ideas Pvt. Ltd for sharing their
valuable knowledge and guiding me during the internship period, and making me learn
new skills and abilities. I am also grateful to the entire staff of Smart Ideas Pvt. Ltd

(Hamro Patro) for their constant support, guidance and opportunity.

With all due respect and gratitude, I would like to give a word of thanks to the members

of the IT department of Amrit Campus, who encouraged me to perform work activities.

With Regards,

Saurav Karki (BIT 362/077)

ABSTRACT

This report summarizes the DevOps Engineer internship at Smart Ideas Pvt.Ltd (Hamro
Patro), where the focus was on infrastructure setup, service deployment, and system
orchestration. Key responsibilities included setting up CI/CD pipelines, Setting up and
Deploying websites to kubernetes cluster, automating deployments, and setting up
virtualization using Proxmox with bare-metal as well as cloud infrastructure. Practical
experience was gained in configuring ScyllaDB and PostgreSQL clusters, creating
reusable VM templates, and managing containerized workloads using Kubernetes
(RKE2,K3s), Implementing proper devops practices to deploy 3-tier applications into
EKS cluster.

Tools such as Helm (with custom CRDs), Flux CD, and MetalLB were used for
declarative deployments and load balancing. Additional components like Envoy Gateway,
NATS messaging, STUN/TURN servers, and Temporal service orchestration were also
integrated to support distributed systems. The internship fostered a deeper understanding
of the DevOps culture emphasizing automation, collaboration, and continuous

improvement while bridging development and operations workflows.

Keywords: DevOps, CI/CD, Proxmox, Kubernetes, ScyllaDB, PostgreSQL, Helm, Flux
CD, MetalLLB, NATS, Temporal, containerization.

TABLE OF CONTENTS

MENTOR'S RECOMMENDATIONccvcinviesuissensecsanssesssecsssssesssessssssssssssssssssssssssassssssss i
SUPERVISOR'S RECOMMENDATIONcciiviinicsseissncssensssnessssssssssssssssssssssssssesssssns ii
CERTIFICATE OF APPROVALuuciiiiitiinticsniisnisssicsssicsssssssssssessssssssssssssssssssssssssssss iii
ACKNOWLEDGEMENTcuuciviiriniinsuissensesssisssnssessass iv
ABSTRACT \
LIST OF FIGUREScuuiniirtiienrnicsnnsnissecssicsesssesssesssssssssssssssssessssssssssssssssssessasssssssssses viii
LIST OF TABLESuuiiiiiiiniineinsninsnississssssssiesss X
LIST OF ABBREVIATIONS xi
Chapterl: INtroduction...............ooiiiiiiiii i e e 1
1.1 INTOAUCHION. . et eeeee e e e e e e 1
1.2. Problem Statement.eutint ittt 2
00 TR 0) 1=l =T 3
1.4. Scope and Limitation.........vvueviueinteritii e et e e ereeniaeanaeenns 3
1.5. Report Organization.eeeuueeernueeeee ettt eeaeeeaieeeeaeeeaanneeeenans 4
Chapter 2: Background Study and Literature Review.........c.ccccevviiiiiiiiiiiinincnn 6
2.1. Introduction to Organization..........cvvutirtieiteiie i eiieeie i eaaeenaenns 6
2.2. Organizational Hierarchy.............cooiiiiiiiiiiiii e, 7
2.3. Working Domains of Organization..............ocevveiiiiiiiiiiiiiinieiniennennnnnn. 8
2.4. Description of Intern Department...........cocvevuiiiiiiiiiiniiiiineneeenen. 9
2.5. Literature ReVIEW.......oiuuiiiiiiiiii e, 9
Chapter 3: Internship ACtiVIties.......ccovuviiiiiiieiiiiiiieiiiniernetiestosasessssosasssnscsnns 11
3.1. Roles and Responsibilities.o.vvuiiiiiiiiiiiiiiiiicceee e, 11
3.2 WEEKLY 10Z. e et 11
3.3. Description of the Project(s) Involved During Internship........................ 14
3.4. Description of Tools Used.........ccuiiuiiiiiiiiiiiiiiei e, 28
3.5. Tasks/Activities Performed..............coiiiiiiiiiiiii, 31

Vi

Chapter 4: Conclusion and Learning OutCoOmes........cccceveiiiereinreinscinccsnescnnsens 41

i B 070 T 11 51) s D N 41
4.2. Learning OULCOIMIO.uttttteet ettt ettt e e eaeeeeeeeenanns 41
References 43
Appendices 44

Vii

LIST OF FIGURES

Figure 1.1 : DevOps Lifecyclecoouieiiiiiiiiiii e 1
Figure 2.1 : Organizational Hierarchy.............c.oooiiiiiiiiii e 7
Figure 3.1 : Architecture Diagram of Project on Containerized and deployed java........ 16

spring boot application into docker containers.

Figure 3.2: Docker COMPOSE UP StEPS. . .uutiuttittinteiite et eeieeieeaeeaaenns 17
Figure 3.3: Verifying the Running Containers.............coovviiiriiiiiiniinieiieinieneennnn. 17
Figure 3.4: Accessing the deployed spring boot app from public ip....................c...e. 18
Figure 3.5: Verifying the data stored in postgresql db container.............................. 18
Figure 3.6 : Architecture Diagram of Project on End-to-End CI/CD Deployment......... 22

of YelpCamp on AWS using Docker & Kubernetes

Figure 3.7 : CICD Pipeline for the application in Jenkins................ccooviiiiiiinnin... 23
Figure 3.8 : Final Deployed web application.............c.ccoviiiiiiiiiiiiiiiiiiiiiiiee e, 23
Figure 3.9 : Architecture Diagram of Deployment of Java Micronaut Web................. 24

Application into k3s kubernetes cluster with custom domain , ssl certificates

and monitoring with prometheus, grafana, and newrelic.
Figure 3.10 : Kubernetes manifest structure of the project..............c.cccovveiiiiinn... 25
Figure 3.11 : Details of the nodes and running resources in k8s cluster..................... 25

Figure 3.12 : Final Deployed Three Tier notes maker app with SSL certificates and 26

Custom Domain.

Figure 3.13 : Grafana Dashboard for application metrics monitoring........................ 27
Figure 3.14 : Lens Dashboard for Cluster Management...........c..cocevevevnineinennennen.. 27
Figure 3.15 : New Relic Dashboard for K8s cluster and resource monitoring.............. 28
Figure 3.16: Portainer Dashboard for container management...............ccccevvievuenneen. 34

viii

Figure 3.17: Verifying the status of the scylla db cluster................c.cooviiiiiiiinn. 36

Figure 3.18: Verifying the files in the bucket.................cooc 38
Figure 3.19: Verifying the bucket..........cocoiiiiiiiiii e, 38
Figure 3.20: Verifying the replication of files in a bucket...................c..cil 39
Figure 3.21: Lens Dashboard showing envoy gateway deployment......................... 40

LIST OF TABLES

Table 2.1 : Company Details.........cooeiiiiiniiiiiii e 7

Table 3.1 : WeeKly LOg....couieiiiii e 12

LIST OF ABBREVIATIONS

AWS: Amazon Web Services

CI/CD: Continuous Integration and Continuous Deployment
CRDs: Custom Resource Definitions
EC2: Elastic Compute Cloud

EKS: Elastic Kubernetes Service
ELK: ElasticSearch, Logstash, Kibana
JAR: Java Archiever

K8s: Kubernetes

LXC: Linux Containers

RBAC: Role Based Access Control
RKE2: Rancher Kubernetes Engine
S3: Simple Storage Service

SDK: Software Development Kit
SSL: Secure Socket Layer

UFW: Uncomplicated Firewall

VM: Virtual Machines

VPN: Virtual Private Networks

YAML: Yet Another Markup Language

Xi

Chapter 1: Introduction

1.1. Introduction

The internship experience at Smart Ideas Pvt. Ltd. (Hamro Patro) offered a valuable
opportunity to gain practical exposure to DevOps methodologies in a real-world
organizational setup. During the course of my DevOps internship, the chance was given
to fully adopt the DevOps culture and observe how it has been used effectively to bridge
the gap between software development and IT operations. DevOps defines the collection
of practices that combines software development (Dev) team and IT operations (Ops)
team to shrink the software development life cycle and provide high quality software

permanently (Senapathi et al., 2019).

The main duty of a DevOps engineer includes understanding the implementation of
DevOps practices to automate and simplify different parts of the software delivery
process. This requires creation as well as optimization of Continuous
Integration/Continuous Deployment (CI/CD) pipelines which automate integration of
code changes frequently and reliably should be deployed; they are important in reducing
timetomarket while increasing overall development team’s productivity (KALEN
WESSE, 2018). This internship served as a foundational experience to explore these
DevOps practices in depth, contributing to a better understanding of how infrastructure
automation, containerization, monitoring, and continuous delivery contribute to modern

software engineering workflows.

S O

Source Version Infrastructure AP Configuration
Code Control as Code FrensEd Management

oy P

Dev & Ops

&
Automation Containerization

TEST MONITOR

©

Continuous Integration/
Quality Continuous Delivery or
Control Deployment (CI/CD)

Development Virtualization

BUILD
3lvd3ido

Visualizations Logging

Figure 1.1 : DevOps Lifecycle

As a member of the DevOps team, my primary responsibility was to learn how to
streamline and enhance both the development and operational workflows so that the
underlying systems could be made robust, efficient, and scalable. I gained hands-on
experience in managing CI/CD pipelines, automating deployment processes, and setting

up virtualization using Proxmox with bare-metal servers.

There was also an opportunity to work with containerized environments using Kubernetes
(RKE2) for orchestrating microservices and managing application deployments. Helm,
along with custom CRDs, was used for resource provisioning, while Flux CD enabled
GitOps-based continuous deployment. Metal LB was configured to provide load balancing

for services within the Kubernetes cluster.

Further technical exposure included configuring ScyllaDB and PostgreSQL clusters,
setting up infrastructure observation, Deploying web applications into cloud kubernetes
clusters, creating reusable virtual machine templates, and integrating distributed system
components such as Envoy Gateway, NATS messaging server, STUN and TURN servers,

and the Temporal service orchestration platform.

1.2. Problem Statement

Smart Ideas, like many tech driven organizations, faced challenges related to the manual
processes in software deployment, the scalability of their infrastructure, and the

efficiency of their operational workflows. The primary issues included:

i) Manual Deployment Processes:

The existing deployment processes were largely manual, leading to inconsistencies,

longer deployment times, and higher risk of errors.
ii) Limited Infrastructure Scalability

As the user base grew, the existing infrastructure struggled to scale efficiently. This

impacted system performance, uptime, and overall user satisfaction.
iii) Lack of Automation and Monitoring

Key operational tasks such as incident response, resource provisioning, and performance
monitoring lacked automation. This led to slower response times and reduced operational

efficiency.

Addressing these problems was crucial for maintaining Hamropatro’s competitive edge,

ensuring customer satisfaction, and supporting the company’s growth objectives.

1.3. Objectives

The key objectives included:

i) To develop a solid understanding of the DevOps lifecycle, emphasizing collaboration
between development and operations teams, continuous integration, and continuous
deployment (CI/CD).

ii) To gain hands-on experience in deploying and managing containerized applications
using Kubernetes, along with resource definition through Helm charts and Custom
Resource Definitions (CRDs).

iii) To design, configure, and manage CI/CD pipelines for automated testing, building,
and deployment of applications, ensuring faster and more reliable software releases.

iv) To observe and gain real-world experience in production deployments, lifecycle of
live services, gaining insights into challenges and best practices in operational
environments.

1.4. Scope and Limitation

The scope of my DevOps internship at Smart Ideas Pvt.L.td production practices in
modern infrastructure management and software delivery. Key areas included:

1.4.1. Scope

i) Bare-Metal Server and Virtualization Management

Managing infrastructure on physical servers using Proxmox for virtualization.

ii) Container Orchestration and Resource Provisioning
Deploying and managing Kubernetes clusters (RKE2) to orchestrate microservices and
containerized applications. Helm charts and Custom Resource Definitions (CRDs) were

used to define and manage Kubernetes resources effectively.

iii) Infrastructure Monitoring and Alerting
Implementing observability tools such as Prometheus and Grafana to monitor system

performance, visualize metrics.

iv) Networking and Load Balancing Configuration
Setting up MetalLB for load balancing within the Kubernetes cluster and integrating
service mesh and proxy tools like Envoy Gateway for efficient traffic routing and

security.

v) Distributed Systems Integration
Working with distributed components such as ScyllaDB, PostgreSQL clusters, the NATS
messaging system, STUN/TURN servers, and the Temporal.

1.4.2. Limitations
Despite the comprehensive scope, there were some limitations during my internship:

Time Constraints:

The duration of the internship was limited, which restricted the depth of exploration and

implementation of certain advanced DevOps practices and tools.

Resource Availability:

Access to certain hardware and software resources was limited, which occasionally

hindered the implementation and testing of specific solutions on a larger scale.

Learning Curve:

The complexity of some tools and technologies, especially those I was unfamiliar with, required

significant time to learn, reducing the time available for handson application.

Assigned Task Scope:

The tasks assigned were predetermined, leaving limited room to explore additional areas

of personal or emerging interest within the DevOps field.

1.5. Report Organization
This report is structured into four main chapters, each detailing different aspects of my

internship experience at Hamropatro. Here is a brief overview of each chapter:

Chapter 1: Introduction

This chapter introduces the work completed during my internship. It outlines the problem
statement, the objectives of the internship, the scope and limitations of the project, and

provides an overview of the report’s organization.

Chapter 2: Organization Details and Literature Review

In this chapter, a comprehensive introduction to Smart Ideas Pvt.Ltd has been provided.
This includes an overview of the organization, its hierarchy, the various domains in which
it operates, and a detailed description of the department where internship has been
completed. Additionally, this chapter includes a literature review or related study,
highlighting relevant theories and frameworks that underpin the works that have been

performed during the internship.

Chapter 3: Internship Activities

This chapter delves into the specifics of my internship activities. It outlines my roles and
responsibilities, provides a weekly log of the technical activities, describes the involved
projects, and details the technical tasks and activities have been completed successfully.

This section offers an indepth look at the handson experience obtained.

Chapter 4: Conclusion and Learning Outcomes

A brief overview of the experience gained during the internship is also stated in this last
part, as well as the main conclusions. It mentions my skills and knowledge, challenges I
faced and how I dealt with them. Additionally, the section talks about what the future

holds in terms of career development after such an opportunity.

Chapter 2: Background Study and Literature Review

2.1. Introduction to Organization

Smart Ideas Pvt. Ltd., popularly known as HamroPatro, is a leading software company
based in Kathmandu, Nepal. Smart Ideas Pvt.Ltd is a pioneering Nepali technology
company recognized as the country’s leading digital super-app. Established in 2010 by
Shankar Uprety, Hamro Patro started as a personal initiative to digitize the traditional
Nepali calendar for mobile platforms. Since then, the company has evolved into a
comprehensive digital ecosystem, offering a diverse range of services aimed at enriching

the lives of Nepalis both at home and abroad.

The platform’s offerings include a Nepali calendar, news aggregation, forex and gold
rates, horoscopes, Nepali FM radio, podcasts, health consultations, event ticketing,
educational resources, and digital remittance services. In recent years, Hamro Patro has
expanded into fintech by launching Hamro Pay, a digital wallet, further strengthening its

role in digital inclusion and financial connectivity.

As of 2025, Hamro Patro has achieved over 10 million plus app downloads and serves
more than 15 million monthly active users, making it the most widely used Nepali app
globally. The app plays a significant role in helping the Nepali diaspora stay connected
with their culture and community, while also serving as an indispensable digital utility for
users within Nepal. Hamro Patro Remit has been especially impactful for international

money transfers, primarily catering to Nepali migrant workers.

Hamro Patro continues to lead Nepal’s digital transformation by providing trusted,
locally-tailored services through a single unified platform. Its success is driven by a
dedicated team of technologists, designers, and domain experts committed to building a

secure, inclusive, and dynamic digital ecosystem.

Table 2.1 : Company Details

Year of establishment 2010

Key Service areas Nepali calendar, News, Horoscope, Finance,
Radio, Podcasts, E-learning, Remittance,

Telehealth, Digital Wallet, Messaging.

Staff Size 60-120 employees

Location of clients Sifal, Kathmandu

Expertise in Multi service mobile platform, calendar,

remit, health, fintech, content delivery

Noteworthy mentions First nepali calendar app on ios, 10 million+

downloads

2.2. Organizational Hierarchy

Smart Ideas promotes innovation and agility through a lean and cross-functional
organizational structure. The Board of Directors provides strategic direction, while the
Executive Management team is responsible for translating this vision into actionable
goals. The organization is structured into specialized departments, each contributing to

the platform's growth and user experience.

Chairman

)
\

|
——

Executive Management { CEQ)

—

. —
| Diectors { Director of Finteen |
| Sperations) 1

L

r
Departments
1 —
1 ‘. } . 1
— Content & Design
Engineering Department | 1
1 -)
- - - S
e — Sales & Marketing |
- N —= |
| Engineering Mznagers | —_—
\ |
- - - r - A =
i L 5| Customer Suppor & Fusiliment
& 1 e
. . - - . —
I
| Product Develepment | DevOps
{ - — -)l Finance and Adminisiration
. - . — — A 1
| L J
— (B
r — — ~ .
{ | \%\J Support Services
Project Managers ‘ DevOps Engineer | |
| S |
J

Associate DevOps Engineer

- O .
—_— I T -

.

—_—
~ 3 r
Testers | DevOps Intam |
- . J w J
I R
r ~
Interns J

Figure 2.1 : Organizational Hierarchy

2.3. Working Domains of Organization

The company primarily operates in the following domains:

1.

Cultural and Calendar Services:

Smart Ideas is best known for its Nepali calendar, which remains the core feature
of the platform. It provides festival updates, tithis, rashifal, Panchang details, and
both Bikram Sambat (B.S.) and Gregorian calendar conversion.

News and Information Aggregation:

The platform aggregates content from over 80 national and regional news portals,
making it a go-to source for news consumption. Users can access real-time
updates on national affairs, politics, finance, sports, and entertainment from a
centralized interface.

Media and Entertainment :

Smart Ideas features Nepali FM radio stations, allowing users to stream local
radio from anywhere. It also hosts a wide collection of pedcasts, along with
features like ecards, music streaming, and video content.

Fintech and Digital Payments :

Smart Ideas has introduced Hamro Pay, a digital wallet that supports mobile
recharges, utility bill payments, merchant QR payments (NepalPay), and more.
Additionally, Hamro Patro Remit enables fast and affordable international
money transfer services, particularly aimed at the large Nepali diaspora working
abroad.

Health and Teleconsultation :

The app integrates telehealth services, allowing users to schedule virtual
consultations with licensed doctors, access medical content, and receive wellness
advice.

Education and E-Learning :

Hamro Patro also offers learning resources such as academic materials, language
tools, and exam preparation content. The app includes dictionary tools, Nepali
typing keyboards, and multilingual support to enhance learning and
communication.

Astrology & Jyotish Consultations:
Hamro Jyotish connects users with certified Vedic astrologers (Jyotish) via live
audio/video consultations and personalized remedies.

8. Marketplace :
Through Hamro Mart, users can experience ecommerce services and buy
different goods online.

2.4. Description of Intern Department

During my internship at Smart Ideas Pvt.Ltd (Hamro Patro)., I was placed in the
Engineering Department, which plays a crucial role in the company’s IT infrastructure
and operations. The DevOps team is responsible for ensuring seamless integration and
deployment processes, enabling continuous integration and continuous delivery
(CI/CD) of applications. This involves managing infrastructure automation,
monitoring system performance, and enhancing deployment efficiency through
streamlined processes and tools. Each team within the department is led by a
dedicated manager who oversees operations and delegates responsibilities to team
members. Under the guidance of the Engineering Department, the department fosters
a collaborative and energetic environment that enables its teams to deliver exceptional

results.

As a DevOps intern, I had the opportunity to work under the guidance of my mentors,
Shital Kumar Nyaupane and Saurab Tharu who provided invaluable assistance
throughout my tenure. My responsibilities included assisting in the setup and
maintenance of scylla, postgres database clusters,working with tools like Docker,
Kubernetes, and Helms, Envoy , Prometheus , Grafana, ELK for infrastructure
automation, and implementing monitoring tools to track system performance.
Additionally, I wrote scripts to automate routine tasks, improving overall efficiency in
deployment and maintenance processes. This handson experience in DevOps
practices, coupled with the support and mentorship from my team, significantly
enhanced my technical skills and prepared me for a future career in the DevOps field.
The collaborative and energetic environment at HamroPatro allowed me to develop

professionally and contribute effectively to the team’s objectives.

2.5. Literature Review

The adoption of DevOps practices has significantly transformed the software
development and IT operations landscape, promoting a culture of collaboration,
continuous integration, and automation (Ebert et al., 2016). DevOps culture thrives on
the breaking down of walls between development and operations teams thus enabling
faster and more reliable software releases (Bass, 2015). This kind of transformation is

supported by a shift towards this culture which is fostered by processes and tools of

automation where quality can be delivered at speed without sacrificing stability of

operations or efficiency in running such systems within an organization.

Continuous Integration/Continuous Deployment (CI/CD) is one such central pillar
among other things that make up DevOps (Farley, 2015). CI/CD pipelines automate
integration testing deployment, speeding up production cycles through reduction of
manual labour errors and general slowness associated with them thus ultimately
boosting overall productivity levels within development teams. Also, it sets a ground
for receiving quick responses from clients during different stages (feedback loops)
because developers can detect any problem at an early stage before proceeding
further.

Additionally, if DevOps practices are adopted in organization then system monitoring
and incident management become easier than ever before. There are continuous
monitoring tools such as Prometheus, Grafana or ELK stack (Elasticsearch, Logstash,
Kibana) among others which offer visibility into the performance and health status of
a system real time (Ebert et al., 2016). Through them organizations can easily find
anomalies proactively as well as respond quickly when incidents occur so as to
improve reliability while reducing downtime for those depending on these systems
most times in businesses world wide. More still, an effective monitoring combined
with logging forms strong pillars towards achieving success through ensuring high
availability levels & performances are maintained always within any given
environment setting under consideration taking cognizance that downtime may
translate into huge losses especially financially or even worse loss of lives due failure

deliver mission critical services.

10

Chapter 3: Internship Activities

3.1. Roles and Responsibilities
While working as a DevOps Engineer intern for Smart Ideas , my main focus was on
bringing together software development and IT operations. I had the following tasks:

i) CD Pipeline Implementation:
Automating software build, test, and deployment processes by setting up Flux CD
pipelines.

ii) Infrastructure Management:
Designing infrastructure solutions that could be scaled using physical servers.

iii) Monitoring and Logging:
Ensuring system reliability and performance, setting up the monitoring tools such as
Grafana, Prometheus, Uptime Kuma as well as setting up alerting systems.

iv) Containerization:
Setting up Kubernetes (RKE?2) for managing Docker containers which were orchestrated
using Rancher.

v) Documentation & Reporting:
Preparing documentation of every procedure undertaken along with their configurations
before finally compiling performance reports at the end of each month.

vi) Collaboration:
Working hand in hand with developers and other team players so as to smoothen
integration points between development and deployment workflows

vii) Continuous learning:
Staying updated with industry trends and applying new knowledge to improve existing
systems.

viii) Deployment to k8s cluster:

Deploying three tier applications to kubernetes cluster following best practices.

3.2. Weekly log

The following table shows the weekly activities the intern performed throughout their

internship period.

Table 3.1: Weekly log

11

Week

Activities

Week 1

Onboarding session.

Into to proxmox virtualization

Getting used to and more familiar with linux commands.
Understanding and learning of networking commands

Learned about linux container and linux container daemons
Containerization and deployment of simple java micronaut

applications in a container runtime environment.

Week 2

Proxmox setup in laptop
Learned about server hardening best practices
Learned about setting up a bastion host.

Introduction to kafka and Distributed systems.

Week 3

Explored wine to run windows application in linux VM.

Explored and setup Envoy Gateway and Contour ingress controller to route
traffic in kubernetes cluster

Learned about load balancing and setup metallb in bare metal systems.

Configured nginx hosted website with SSL certificate

Week 4

Explored and used customization for configuration management in k8s
cluster.

Setup Flux CD for continuous delivery of applications into the kubernetes
cluster.

Explored all the controllers of Flux CD.

Compared Flux CD and Argo CD for continuous deployment.

Week 5

Learned about image automation controllers to automatically update images
in deployment by fetching from container registry like docker hub.

Learned about setting monitoring with Flux CD

Learned and set up NATS in the kubernetes cluster with Helm Charts.
Setuped RKE2 Kubernetes cluster

Containerized and deployed java spring boot app to docker containers.

12

Week 6

Introduction to scylladb and local setup.

Setup scylladb cluster with 2 master and 2 workers nodes in vmware virtual
machines.

Introduction to Ipsec and setting up site to site vpn between data centers with
libreswan.

Learn and understand about ipsec.

Week 7

Deployed sidecar container in RKE2

Explored Iptables and UFW firewall.

Learned about K8s common Errors and troubleshooting process
Learned about awk and sed command

Created VM Template for future use.

Week 8

Deployed pods in RKE2 cluster and checked where pod schedule to new
node on failure or not

Explored Hamro Patro Development environment repo structure flow.
Learned about how Gateway VM is created.

Explored influxdb for log collection.

Added Metrix server in proxmox to collect old dallas data center logs into

influxdb.

Week 9

Setup Ipsec from old dallas data center to lax data center.

Explored scylladb multi data center cluster.

Explored the API Gateway in Kubernetes.

Setup Envoy Gateway , Http Route to route the external traffic to k8s pods.

Deployed Yelcamp a three tier app to EKS cluster.

Week 10

Setup postgres database cluster in vm.

Explored and Setup Reloader in kubernetes.

Explored about kubens and kubectx tools for kubernetes.

Explored monitoring of kubernetes cluster with octant, kubernetes dashboard,

lens.

Week 11

Implemented service level load balancing in envoy gateway.
Explored envoy circuit breaker, client traffic policy in envoy gateway.
Explored about proxmox vm backup in s3 bucket.

Setup vm backup in digital ocean s3 bucket.

Explored Hamro Patro Repo Structure.

13

Week 12 e Setup monitoring in RKE2 K8s cluster.

e Explored EBPF and its use cases.

e Setup ELK stack for monitoring log and visualizing them using Kibana in
local system

e Devopsified and deployed java micronaut application to k3s kubernetes

cluster.

3.3. Description of the Projects Involved During Internship

During my internship, I was involved in several tasks ranging from minor configurations
to major deployments. Among these, three major projects stood out, both leveraging
local infrastructure and DevOps practices. Here are the some of the minor to major

learnings and tasks i have performed:

Project 1: Containerized and deployed java spring boot application into docker
containers.

In this project I focused on containerizing a full-stack Java Spring Boot application and
deploying it with Docker Compose in a cloud v environment. It provided a hands-on
understanding of containerization, environment management, and service orchestration all

core concepts in modern DevOps practices.

i) Application Packaging with Multi-Stage Dockerfile

The application was built using a multi-stage Dockerfile to optimize image size and

efficiency:

e In the first stage, a Maven image was used to compile and package the Spring
Boot application (task-manager) into a runnable JAR file.

e The second stage used a lightweight OpenJDK runtime image (eclipse-temurin) to
run the packaged application, reducing the final image size and improving startup

speed.
Dockerfile:

Stage 1: Build the application

FROM maven:3.9.6-eclipse-temurin-17-alpine AS build
WORKDIR /app

Copy the Maven project files

14

COPY pom.xml .

COPY src ./src

Package the application

RUN mvn clean package -DskipTests

Stage 2: Run the application

FROM eclipse-temurin:17-jre-alpine

WORKDIR /app

Copy the built jar from the previous stage

COPY --from=build /app/target/task-manager-0.0.1-SNAPSHOT.jar app.jar
EXPOSE 8080

ii) Service Composition with Docker Compose

The entire application stack was defined and orchestrated using docker-compose.yml,
enabling seamless local deployment:
® A PostgreSQL 15 container served as the backend database, with persistent
storage through Docker volumes.
e The Spring Boot container ran the main application, exposing it on port 8080, and

was configured to connect to the PostgreSQL service using environment variables.

Docker Compose:
version: '3.8'
services:
postgres:
image: postgres:15
container_name: pgdb
restart: always
environment:
POSTGRES_DB: taskmanager
POSTGRES_USER: taskapp
POSTGRES_PASSWORD: securepassword
ports:
- "5433:5432"
volumes:
- pgdata:/var/lib/postgresql/data

taskmanager:

15

build: .
ports:
- "8080:8080"

environment:

SPRING_DATASOURCE_URL: jdbc:postgresql://postgres:5432/taskmanager

SPRING_DATASOURCE_USERNAME: taskapp
SPRING_DATASOURCE_PASSWORD: securepassword

depends_on:
- postgres
volumes:
pgdata:
1 2
Source Code Cloned to the

Ubuntu Server

Docker Containers

Figure 3.1 : Architecture Diagram of Project on Containerized and deployed java

spring boot application into docker containers.

16

fin] e va-springbootpostgres cker-compos docker-compose up

root@localhost ~/taskmanager-java-springboot-postgres git:(main)il

docker-compose up

DUMIILUEUAIY 11U USHILI @Le 1R LES [| SPY s MGV S GUALIIS s Ul Yf NGV SIIE] UT Y] GPAUIIS] LUV U 4w uLis LiuneT T g
Downloaded from central: /repo.maven.apache.org/maven2/org/jdom/jdom2/2.0 .0.6.1.jar (328 kB at 735 kB/s)

Downloaded from central: /repo.maven.apache.org/maven2/commons-io/commons-io,/2.13.0/commons-io=-2.13.0.jar (484 kB at 1.1 MB/s)

Downloaded from central: /repo.maven.apache.org/maven2/org/vafer/jdependency/2.8.0/jdependency-2.8.0.jar (233 kB at 492 kB/s)

Downloaded from central: https://repo.maven.apache.org/maven2/org/apache/commons/commons-collections4/4.4/commons-collections4-4.4.jar (752 kB at 1.4 MB/s)
Downloaded from central: https://repo.maven.apache.org/maven2/org/springframework/spring-core/6.0.10/spring-core-6.0.18.jar (1.8 MB at 3.4 MB/s)
[INFO] Replacing main artifact /app/target/task-manager-0.0.1-SNAPSHOT.jar with repackaged archive, adding nested dependencies in BOOT-INF/.
[INFO1 The original artifact has been renamed to /app/target/task-manager-8.0.1-SNAPSHOT.jar.original

[INFO]
[INFO] BUILD SUCCESS
[INFO] --
[INFO] Total time: 18.931 s

[INFO] Finished at: 2025-86-29T1

[INFO] ===

---> Removed intermediate container 86h8546304b8

---> b345581e1101

Step 6/10 : FROM eclipse-temurin:17-jre-alpine

---> 2d3fB8ebfdal
Step 7/10 : WORKDIR /app

-==> Using cache

===> 210c444efh01
Step 8/10 : COPY --from=build /app/target/task-manager-8.0.1-SNAPSHOT.jar app.jar

---> a7c088f729ae
Step 9/10 : EXPOSE 8080

===> Running in BbBcecdBaal3a

---> Removed intermediate container BbGcecdB8aa3a

-=-=> b4196871f433
Step 16/16 : ENTRYPOINT ["java", "-jar", "app.jar"]

===> Running in 0a7@1fead714

---> Removed intermediate container 0a701fead714

---> cff40f11bfdb
Successfully built cff40f11bfdb
Successfully tagged taskmanager-java-springboot-postgres_taskmanager:latest
WARNING: Image for service taskmanager was built because it did not already exist. To rebuild this image you must use ‘docker-compose build® or ‘docker-compose up --build"

Creating pgdb ... done

Creating taskmanager-java-springboot-postgres_taskmanager_1 ... done

Attaching to pgdb, taskmanager-java-springboot-postgres_taskmanager_1

pgdb | The files belonging to this database system will be owned by user "postgres".
pgdb | This user must also own the server process.

Figure 3.2: Docker compose up Steps

o e ve-spr s ckercompos jocker-compose Java-springboot-postgres

root@localhost ~/taskmanager-java-springboot-postgres git:(main)1 (1.186s)

docker ps

CONTAINER ID IMAGE COMMAND CREATED STATUS PORTS

b24cc94a59e9 taskmanager-java-springboot-postgres_taskmanager “java -jar app.jar" 3 minutes ago Up 3 minutes 0.0.08.0:8080->8080/tcp, 080->8080/tcp tas
kmanager-java-springboot-postgres_taskmanager_1

d194379a6a19 postgres:15 "docker-entrypoint.s." 3 minutes ago Up 3 minutes 0.08.0.8:5433->5432/tcp, [::]:5433->5432/tcp pgd
b

A Help me manage running containers. Ctrl Shift =

root@localhost ~/taskmanager-java-springboot-postgres git:(main)v 11

Figure 3.3: Verifying the Running Containers

17

~ @ MyTasks-TaskManager X+ =%

<« C A Notsecure 172.105.54.75:8080/tasks * 9 O (@) verify itsyou

Task Manager sauravkarki Logout

Add New Task
2 1 o onTc |

Pending Tasks

This is third task high This is first task low

Nk compete gt Nk compete gt

Completed Tasks

This is second task

mark incompiete [EEES)

Figure 3.4: Accessing the deployed spring boot app from public ip.

fin] e ckercompos: jocker-compase ~U taskapp -d taskmanager

root@localhost ~/taskmanager-java-springboot-postgres git:(main)il

docker exec -it pgdb psql -U taskapp -d taskmanager

taskmanager=# \1
List of databases
| Owner | Encoding | ICU Locale | Locale Provider | Access privileges

—— -
postgres | taskapp | UTF8 en_US.utf8 | en_US.utfs
taskmanager | taskapp | UTF8 en_US.utf8 | en_US.utf8
template® | taskapp | UTF8 en_US.utf8 | en_US.utf8 =c/taskapp +
| | taskapp=CTc/taskapp
templatel | taskapp | UTF8 en_US.utf8 | en_US.utf8 =c/taskapp +
| taskapp=CTc/taskapp
(4 rows)

taskmanager=# \c taskmanager
You are now connected to database "taskmanager" as user "taskapp".
taskmanager=# \dt
List of relations
Schema | Name | Type |
______ fmmmmm -
public | tasks | table | taskapp
public | users | table | taskapp
(2 rows)

taskmanager=# select * from tasks;
id | completed | created_at | description | due_date | priority | title | user_.
—————— +————- 4———— = -4 4

(8 rows)

taskmanager=# select * from tasks;
id | completed | created_at description | prierity | title

| 2025-86-29 17:59:18.320701 | This is description of first task | 2025-06-29 23:44:00 | LOW | This is first task
| 2025-86-29 18:80:05.627571 | This is the description of third task | 2025-86-29 00:45:00 | HIGH | This is third task
| 2025-86-29 17:59:38.481028 | This is the description of second task | 2025-06-29 12:44:00 | HIGH | This is second task

taskmanager=# select * from users;
id | email | password | username

S —— — — =

1 | saurav@gmail.com | $2a$10$BmRblmoQjBJYs8QWLBaKSuFBtt0xI.vDhiYmkScoobahFxnHkHng6 | sauravkarki

Figure 3.5: Verifying the data stored in postgresql db container

Project 2:End-to-End CI/CD Deployment of YelpCamp on AWS using Docker &

Kubernetes

18

This project was about designing and implementing a complete DevOps workflow for a
full-stack web application called YelpCamp. It involved transitioning from manual
deployments to automated, containerized, and scalable deployment pipelines, leveraging

modern DevOps tools and best practices.

i) Initial Manual Deployment

The project began with manual deployment on AWS EC2 instances, where:

e The Node.js backend was manually configured on a virtual machine.
e MongoDB Atlas was used as a cloud-hosted NoSQL database.
e The environment provided a baseline understanding of infrastructure provisioning

and manual service setup.

ii) Containerized CI/CD Workflow

To streamline development and deployment, the application was containerized using

Docker and integrated into a CI/CD pipeline using Jenkins:

e Jenkins Pipelines were configured to trigger on code changes, automating;:
© Unit Testing
o0 Code Quality Checks using SonarQube
O Security Scans using Trivy
e Docker images were built and pushed to DockerHub.
e A development environment on EC2 consumed these images for continuous

integration and testing.

iii) Production Deployment on AWS EKS

The final stage of the project involved a fully automated production deployment on AWS
EKS:

e The Dockerized application was orchestrated using Kubernetes, ensuring
scalability, high availability, and fault tolerance.

e Kubernetes manifests define the desired state of application components.

e Security best practices were followed using RBAC, service accounts, and
namespace isolation.

e External services such as Mapbox (for geolocation) and Cloudinary (for image

hosting) were securely integrated.

Manifests:

19

apiVersion: vl
kind: Secret
metadata:

name: yelp-camp-secrets
type: Opaque
data:

CLOUDINARY_ CLOUD NAME: ZHgzdnlgaTRv

CLOUDINARY_ KEY: NTk10TU40TcxODMONzU3

CLOUDINARY_ SECRET: N3ZSRnhfbF9YNIIsc3pZMVFCaHNxT;jJrQlIB
MAPBOX TOKEN:
cGsuZXIKMUIgb2ljMkYxY21GMmEyRnlhMmtpTENKaEIqb21ZMjAzTmpGbO01HTnJINR3RzZVR
KcGNYaHphak]2WTJaNE15SjkuRjR3VzexSFIfbGNfUDR4RFAOYnIEQQ==
DB _URL:
bW9uZ29kYitzenY6Ly9zY X VyY XZrY XJraXR1Y2g6MHRBQOITTDNReVpCZHZmUkBzY X VyY
XYtZGItdGhyZWV0aW VyLnRibmxOLm1vbmdvZGlubmVO0Lz9yZXRyeVdyaXRIcz10cnV1IncO9bW
Fgb3JpdHkmYXBwTmFtZT1zY XVyY X YtZGItdGhyZWV0aW Vy

SECRET: c2F1cmF2a2Fya2k=
apiVersion: apps/vl
kind: Deployment
metadata:

name: yelp-camp-deployment
spec:

replicas: 1

selector:

matchLabels:
app: yelp-camp
template:
metadata:
labels:
app: yelp-camp

spec:

20

containers:
- name: yelp-camp-container
image: sauravkarki/campapp:latest
ports:
- containerPort: 3000
env:
- name: CLOUDINARY CLOUD NAME
valueFrom:
secretKeyRef:
name: yelp-camp-secrets
key: CLOUDINARY CLOUD NAME
- name: CLOUDINARY KEY
valueFrom:
secretKeyRef:
name: yelp-camp-secrets
key: CLOUDINARY KEY
- name: CLOUDINARY SECRET
valueFrom:
secretKeyRef:
name: yelp-camp-secrets
key: CLOUDINARY SECRET
- name: MAPBOX TOKEN
valueFrom:
secretKeyRef:
name: yelp-camp-secrets key: MAPBOX TOKEN
-name: DB URL
valueFrom:
secretKeyRef:
name: yelp-camp-secrets

key: DB URL

21

- name: SECRET
valueFrom:
secretKeyRef:
name: yelp-camp-secrets
key: SECRET
livenessProbe:
httpGet:
path: /
port: 3000
initialDelaySeconds: 30 # Adjust the initial delay here
readinessProbe:
httpGet:
path: /
port: 3000
initialDelaySeconds: 30 # Adjust the initial delay here
apiVersion: v1
kind: Service
metadata:
name: yelp-camp-service
spec:
selector:
app: yelp-camp
ports:
- protocol: TCP
port: 3000
targetPort: 3000
type: LoadBalancer

i —%@—9 S Manual Deployment
P

o
t_f_j o=z \/
o) g ;gﬁ @H@sonarqubg\\i% &.g Hiﬁ E‘f o DOCKERHUB

s by Build
user l
G
AWS EKS

Figure 3.6 : Architecture Diagram of Project on End-to-End CI/CD Deployment of
YelpCamp on AWS using Docker & Kubernetes

22

G A Notsecure 54.210.219.162:8080/job/PROD-3-tier-CICD/ * = e

Stage View
3 . 3 Trivy Docler i Docker Deploy i
Declarative: Git Install Unit Fs SonarQube Build Docker Taish to eks Verify the
Tool Install checkout Dependencies Tests i analysis :nd |rsnage i jia Deployment
Average stage times: 148ms 566ms s 769ms 1s 22s 8s 22s s 24s 420ms
(full run time: ~2min 13s) . ket o . vt s -
2131 126ms 482ms 10s 756ms 1s 225 s 19s 65 Tmin 1s 907ms
12s 770ms 1s 22s 8s 22¢ Ss ‘ 716ms 90ms
-
/ 2055 146ms 451ms 12s 764ms 1s 225 8s 19s 55 1min Os 927ms
o =
20149) m 4 23s 8 265 1 670ms 85ms
=
@D
20144 A 5 22s 22s 985ms 92ms -
.
Figure 3.7 : CICD Pipeline for the application in Jenkins
<« [A\ Not secure ad4f24b5070214a5d847df04f699400c-845509527.us-east-1.elb.amazonaws.com:3000 Y =

velpcamp rounds Login Register

YelpCamp

Welcome to YelpCamp!
Jump right in and explore our many campgrounds

Feel ffee to share some of your own and comment on others!

View Campgrounds

Figure 3.8 : Final Deployed web application

Project 3: Devopsified and Deployment of Java Micronaut Web Application into k3s
kubernetes cluster with custom domain , ssl certificates and monitoring with

prometheus, grafana, newrelic.

In this project, I focused on complete DevOps implementation of a three-tier web
application built using Micronaut, React, and ScyllaDB. The application was
containerized, deployed in a self-hosted lightweight K3s Kubernetes cluster, and exposed

securely over a custom domain with Let's Encrypt SSL certificates and Traefik Ingress.

23

i) Containerization and Image Management

The frontend (React) and backend (Micronaut) components were:

e Dockerized separately with production-ready Dockerfiles.
e Pushed to Docker Hub for use in Kubernetes deployment.

This enabled version-controlled, reproducible deployments across environments.

ii) Kubernetes Deployment on K3s

A K3s cluster was manually provisioned and configured to run the application:

e Kubernetes manifests were written for deployments, services, and ingress rules.

e Each tier (frontend, backend, database) was independently deployed in its own
pod.

e The backend services connected to a ScyllaDB cluster set up on two virtual

machines.

iii) Ingress & Domain Setup with Traefik and SSL

Traefik was used as the Kubernetes ingress controller to handle traffic routing:

e Ingress resources were defined with custom routing rules for / and /api paths.

e The domain notes.ksaurav.com.np was mapped to the Traefik LoadBalancer
External IP.

e Use Cloud Flare as a DNS Manager.

e Let’s Encrypt certificates were issued automatically using cert-manager and a

configured ClusterIssuer.

Monitoring

24

Figure 3.9 : Architecture Diagram of Deployment of Java Micronaut Web
Application into k3s kubernetes cluster with custom domain , ssl certificates and

monitoring with prometheus, grafana, newrelic.

= 0 lamsaurav-karki / Updated notes maker Q Type [7]to search al- +-0 n e ,J

<y Code () Issues [Pullrequests (@ Actions [Projects [0 Wiki (@ Security | Insights 3 Settings

[0 Files Updated_notes_maker /k8s/ (0 Add file -
B> finahworkin gkés T e @ iamsaurav-karki Delete kis/metallb-config.yam 655b112 - 6 minutes ago) History
Q Gotofile
. This branch is 4 commits ahead of sain . 1% Contribute ~
> I backend
> M database
Name Last commit message Last commit da.
> I frontend
|~ &= kes L
[backend-deployment.yam! D) backend-deployment.yam! running: in kBs 4days ago
backend-service.yaml
o Y [backend-service yaml running: in k8s. 4days ago
O configmap.yaml
configmap.yaml running: in k8s 4 days ago
[frontend-deployment.yam| o gmapy g s 2g
[frontend-service.yam! O3 frontend-deployment.yaml running: in kss 4 days age
D hitpredirect yami [0 frontend-service.yaml running: in ks 4 days ago
[lets-encryptyaml
O httpredirect.yaml running: in k8s 4 days ago
[namespace.yaml
[notesingress.yam O lets-encryptyam! running: in k8s. 4days ago
O gitignore D) namespace.yaml running: in k8s 4days ag
[README.md _
[notes-ingress.yam running: in k8s. 4days age

[) docker-compose.yam

Figure 3.10 : Kubernetes manifest structure of the project

w Zelli (friendly-horse)
Zellij (friendly-horse) <[]>
root@p: ~ ——M8M8¥ MMM —— SCROLL: 8/41
r00t@3i:~# kubectl get nodes

NAME STATUS ROLES AGE VERSION

master-1 Ready control-plane,master 2déh v1.32.6+k3sl

worker-@ Ready <none> 2d6h v1.32.6+k3s1

r00t@3i:~# kubectl get all -n notes-maker

NAME READY STATUS RESTARTS AGE

pod/notes-app-backend-5ced7c6594-vhpjd 1/1 Running 2 (32m ago) 51m

pod/notes-frontend-79cb55fdd5-fdxg7 171 Running @ 51m

pod/notes-frontend-79cb55fddS-nwgwn 1/1 Running @ 51m

NAME TYPE CLUSTER-IP EXTERNAL-IP PORT(S) AGE
service/notes-backend-service ClusterIP 10.43.159.17 <none> 8080/TCP 2d1lh
service/notes-frontend-service ClusterIP 10.43,191.154 <none> 3000/TCP 2d1h

NAME READY UP-TO-DATE AVAILABLE AGE

deployment.apps/notes-app-backend 1/1 1 1 34h
deployment.apps/notes-frontend 2/2 2 2d1h

NAME CURRENT READY
replicaset.apps/notes-app-backend-5c6d7c6594
replicaset.apps/notes-app-backend-64c86f548c
replicaset.apps/notes-app-backend-b87d97f6d
replicaset.apps/notes-frontend-5466cdScb
replicaset.apps/notes-frontend-587b8dcc84
replicaset.apps/notes-frontend-665b4c468f
replicaset.apps/notes-frontend-6b7c8d5547
replicaset.apps/notes-frontend-78dc46bccb
replicaset.apps/notes-frontend-79cb55fdds
replicaset.apps/notes-frontend-85c57b765b
T00t@@1i:~# nodetool status

Datacenter

SNSSSSS e SR
OSNOO®ee®e SR
OSNSOSSeS88 SR

Figure 3.11 : Details of the nodes and running resources in k8s cluster

25

€ ubuntu? - Metrics | Akamai C| @ simple Notes Maker x +

< © M % notesksaurav.com.np 2 Q &0

B Simple Notes Maker

Create New Note

Title:

Enter note title...

Your Notes (3)

"Daily Standup - July3, |« j
2025" —

ntent: Yesterday: Fixed ScyllaDB startup
bug due to missing scylladb-service in
Kubernetes config. Today: Will test container
connection from React frontend > Micronaut
backend » ScyllaDB. Blockers: Need
clarification on CORS policy errors from

frontend.

"Key Differences: useradd El E

vs adduser”

Content: useradd: Low-level command
Doesn't ereate home directory by default
adduser: Debian-specific, interactive, higher-
level script built on top of useradd. Prefer
adduser for human users; useradd for

scripting/system-level users.

"Micronaut Dependency E j

Injection Summary"

Content: Uses @Singleton, @Inject, and
compile-time DI (very fast). Avoids reflection
— better for microservices. Compatible with
Jakarta and supports AOP. Observed issue:
Circular dependency when injecting service
into controller and vice versa— fixed via

interface abstraction.

Figure 3.12 : Final Deployed Three Tier notes maker app with SSL certificates and

Custom Domain.

@ simple @ Tiscert @ simple i & Kuberne Simple I ©) Personal © iamsau &b Helm | 1 @ prometh # Configu O Prometh B Kuberr X 15 DeployG B Kuberne + v @ x

< © [] & Notsecure 172.105.36.6:32737/d/dUMNSxOmk/kubernetes-nodes?orgld=1&from=now-1h&to=nowatimezone=browseravar-server=172.1 < | Q . 4

@ Last1hour

Dashboard: tem Load

Network Transmitted

26

nple a @ Simple N © Person. [y 35 Helm []

< © [& Notsecure 172.105.36.6:32737/d/db5dad85-fSca-4049-a0de-1b898babbb22/ks-dashboard?orgld=1&from=now-30m&to=nowatimezone... < | Q A Do0Be & e =

Namespace (Container Name) ~ All B Update Gitub | @ Last 30 minutes

Node Resource Overview: Selected Nodes: [All]
Node Memory Ratio Node CPU Ratio Nodes with Pod Namespace Resource Si i All: Network Overvi sociable nodes and namespaces.

Spaces Micrc

Numbe, Nu... Upper|

Node Storage Information

Normal Node 1 node-role kubernetes.jolcontrol-piane 1

Memory Usage [All} CPU Used Cores[All] Pod Number and nodes [All]

7:45

All: Nodes CPU Breakdown Node Memory Breakdown

Navigator Pads - Notes maker_Cluster %

Local Kubeconfigs Y, Allnamespaces

Namespace . Memor Restart | Controlledf Node Status

680.0KiB

Notes_maker_Cluster (v1.326+k3s1)

Figure 3.14 : Lens Dashboard for Cluster Management

27

€ ubuntu) Your Rep € prometh B Monitorin @ LargeReq B (68) Have B (5) Feed © observat © GitHub St D New Reli defaul: % F3 Get Data 2 saurav U Enterprisi + v - @ x

< (e % one.newrelic.com/nri-core/kubernetes-cluster-explorer/kgs-cluster-overview/NjU1NTY3OHTKZSQXxOQXw2NTE3NzgOMDcaMjcIM... = <2 | (P AP o EOBEXe =
Kubemetes / Clusters 2 ® fisee @ o
default~ ¥ © Tags R Teams -
[0 ntrastructure Good ¢ (O Since 30 minutes ago (GMT+5:45) «

Unhealthy Container N R) Persiste
HPAs Restarts Nodes Services Daemonsets Containers
Unhealthy
Statefulsets

Bending Pad Count by Node Pending Pods Kubernetes Warning Events by Reason

3 Summary 1 OO o 0‘I
) roross [EeEN

SP— 0 8 21 1 29 0
% Nodes Unhealthy Namespaces Deployme < I
1 Live Dobugging with P s Failed Pods (UMK Namespaces Deployments Statefulsets ~ Pods HPAS

Pending and Falled Pod Info Container Restarts

 Whats Now 70 &

2, Adauser No chart data avalable
© Upgrade Now

aurav karkl

5 Quary your data @

Figure 3.15 : New Relic Dashboard for K8s cluster and resource monitoring

3.4. Description of the Tools Used

During the internship, I worked extensively with a variety of DevOps, containerization,
cloud-native, and infrastructure tools. These tools were instrumental in enabling
automation, scalability, monitoring, secure deployments, and production-level reliability

for the projects I was involved in.
1. Docker & Docker Compose

Docker was used extensively for containerizing applications, managing dependencies,
and creating reproducible environments. Docker Compose simplified multi-container

orchestration by defining services, volumes, and networking in a single YAML file.
Key Use Cases:

e Containerization of Java Spring Boot, Micronaut, and React applications.
e Orchestration of multi-tier applications with databases like PostgreSQL.

e Streamlining development-to-deployment lifecycle.

2. Kubernetes (RKE2, K3s, EKS)

28

Kubernetes served as the primary orchestration platform for managing containerized
applications. Both lightweight (K3s) and production-grade (RKE2, EKS) clusters were

used.
Key Use Cases:

e Deployment of applications like YelpCamp and Notes Maker.
e Setup of monitoring, ingress (Traefik, Envoy Gateway), and service routing.

e Handling scalability, fault tolerance, and zero-downtime deployments.

3. Jenkins

Jenkins was used to implement a CI/CD pipeline, automating build, test, scan, and

deployment workflows for containerized applications.
Key Use Cases:

e Triggering CI/CD workflows on code changes.
e Integrating tools like SonarQube (code quality) and Trivy (security scanning).

e Deploying Docker images to environments via Kubernetes manifests.

4. HashiCorp Vault

Vault was deployed inside a Kubernetes cluster to securely manage and inject secrets into

pods using Vault Agent Sidecar Injector and Kubernetes Auth method.
Key Use Cases:

e Dynamic secrets management for applications.
e Secure injection of credentials into pods via annotations.

e Integration with Kubernetes Service Accounts and Roles.

5. Helm

Helm acted as the package manager for Kubernetes, simplifying the deployment of

complex applications like Vault, Envoy Gateway, NATS, and more using reusable charts.
Key Use Cases:

e Installing third-party services with custom values (e.g., vault-values.yaml).

e Managing version-controlled, declarative deployments.

6. Traefik Ingress Controller & Envoy Gateway

29

Both Traefik and Envoy Gateway were explored and deployed as ingress controllers to

expose applications externally with custom domains and routing rules.
Key Use Cases:

e (Custom domain setup with SSL using Let’s Encrypt via cert-manager.
e HTTP routing to internal services with annotations and HTTPRoute.

e Secure TLS termination and middleware configurations (e.g., HTTPS redirect).

7. ScyllaDB

ScyllaDB, a high-performance NoSQL database, was set up as a multi-node cluster for

backend services needing high throughput and low latency.
Key Use Cases:

e (lustered database setup across VMs for high availability.
e Use of CQL for querying and testing replication.

e Backend storage for notes maker app.

8. MinIO

MinlO was deployed locally to simulate S3-compatible object storage with replication

and policy-based access control.
Key Use Cases:

e Object storage for application backups, logs, and assets.
e Automated file upload and replication via Python SDK.

e Policy and bucket-level access configuration for secure storage.

9. Monitoring Tools (Prometheus, Grafana, New Relic, Octant, Lens)

A robust monitoring stack was set up to collect metrics, visualize system health, and

debug deployments.
Key Use Cases:

e Prometheus for scraping application metrics
e Grafana and New Relic for visualizing cluster and app-level performance.

e Lens, Octant, and Kubernetes Dashboard for real-time cluster insights.

10. Flux CD

30

Flux CD was used for GitOps-based continuous delivery in the Kubernetes cluster,

allowing automatic application updates from version-controlled Git repositories.
Key Use Cases:

e Declarative deployment management with Git as the source of truth.
e Image update automation using Image Automation Controllers.

e Policy-based delivery and rollback.

11. NATS & Kafka

Both NATS and Kafka were explored for real-time messaging and distributed

communication.

e Deployment via Helm in Kubernetes.
e Introduction to publisher-subscriber architecture.

e Scalable messaging solutions for microservices.

12. Proxmox VE

Proxmox was used for virtualization and VM management, including creation of VM

templates and running Linux containers (LXC).
Key Use Cases:

e Hosting Kubernetes clusters and database nodes in VMs.

e VM backup to S3 using DigitalOcean-compatible buckets.

3.5. Tasks / Activities Performed
3.5.1. Integrated HashiCorp Vault For secret management of Kubernetes Pods.
In this task, I have installed and set up a hashicorp vault in k8s cluster to manage

kubernetes secrets for advanced security. Steps I followed:
Added helm repo for hashicorp and installed vault using helm releases:

- helm repo add hashicorp https://helm.releases.hashicorp.com
- helm repo update

- helm install vault hashicorp/vault -n vault -f vault-values.yaml

vault-values.yaml

server:

31

ha:
enabled: true
replicas: 2
raft:
enabled: true
config: |
ui = true
listener "tcp" {
address = "0.0.0.0:8200"
cluster_address = "0.0.0.0:8201"
tls_disable =1
}
storage "raft" {
path = "/vault/data"
}
service_registration "kubernetes" {}
dataStorage:
enabled: true
size: 10Gi
storageClass: "local-path"”
extraEnvironmentVars:
VAULT_LOG_LEVEL: "debug"
injector:
enabled: true
ui:

enabled: true

Create policy for access to secrets of hashicorp vault:
path “secret/data/mysql” { capabilities = [’create”, “update”, “read”, “delete”, “list”]

}

path “secret/data/frontend” { capabilities = [”create”, “update”, “read”, “delete”, “list”]

}
path “secret/metadata/mysql” { capabilities = [“list”]

}
Created Role and policy is attached to the role:

32

kubectl exec -n vault -it vault-0 — wvault write auth/kubernetes/role/vault-role \
bound_service account_names=vault-auth \
bound_service_account_namespaces="webapps” \

policies=myapp-policy \

ttl=24h

Now I have created the service account and attached the role to the service account so that
the pod associated with the service account can get access to the secrets stored in the

vault.

apiVersion: v1

kind: ServiceAccount
metadata: name: vault-auth
namespace: webapps

Now used the annotations to the deployment so that the pod can get and use the

secrets:

annotations:

vault.hashicorp.com/agent-inject: “true”

vault.hashicorp.com/role: “vault-role”
vault.hashicorp.com/agent-inject-secret-MYSQL ROOT PASSWORD: “secret/mysql”
vault.hashicorp.com/agent-inject-template-MYSQL ROOT PASSWORD: |
{{- with secret “secret/mysql” -} }
export MYSQL_ROOT_PASSWORD="{{ .Data.data. MYSQL_ROOT_PASSWORD
38
{{-end }}

3.5.2. Deployed Portainer for container management.

During this task, Portainer was deployed on local host machines to provide a graphical

interface for managing Docker containers and resources running on the local system.

Portainer is a lightweight, open-source container management tool that simplifies
container operations such as monitoring, creating, starting, stopping, and removing

containers.

33

http://vault.hashicorp.com/agent-inject:
http://vault.hashicorp.com/role:
http://vault.hashicorp.com/agent-inject-secret-MYSQL_ROOT_PASSWORD:
http://vault.hashicorp.com/agent-inject-template-MYSQL_ROOT_PASSWORD:

Key Steps and Features:

e Pulled and deployed the official portainer/portainer-ce image using Docker.

e Exposed Portainer for local UI access.

e Used Portainer to: Monitor running containers and their resource usage (CPU,

memory, ports),Manage container lifecycle operations (start, stop, remove), view

container logs, networks, and volumes.

- $ docker volume create portainer_data

- $ docker run -d -p 8000:8000 -p 9443:9443 --name portainer --restart=always -v

/var/run/docker.sock:/var/run/docker.sock
portainer/portainer-ce:lts

- $ docker ps

Ovenview # stacks-saur= | €) iamveerama | [l Roles | 1aN & volumes
[©Notsecure hups:/localhost:9443/#1/3/docker/containers
© Upgrade to Business Edition

Containers

portuiner s Container list &

B instances silingand ¢ €) spacelifepro (@ Ansible i

@ Containers

@ Home
=3 Name § State 'V Quick Actions Stack Image
g BO
B Dashboard =
@ Templates troatend [running BO
2 Stacks
@ Containers P @D 0o . '
= | e
e [running :
& Networks
B8 Volumes sabeiko-scyla ["exited - code 0] BO
© Events
Vlag [hoaithy | DO e notes-maker scyladblscyllas.a

@ Host

Administration

% User-related

@& Environment-related

4 Registries
B Logs
& Notifications

@ Settings

portainer.io Communiy

-V

Created
2025-07-0113:59:32
2025-07-01 13:59:37
2025-06-20 100354
2025-07-0114:00:20
2025-06-19 23:52:31

2025-07-0113:58:32

portainer_data:/data

mple Note: | § Install Port Portaine “ v _ @
< P L DoOBR <&@
O ® & admin
IP Address Published Ports Ownership
1721803 #8080:8080
121804
1722002 240216443
1721702 '8000:8000 $0443:0443
w adr
1721802 &'9042:9042 | administrators

tems per page | 10

Figure 3.16: Portainer Dashboard for container management

3.5.3. Setup Scylla DB Cluster.

As part of this task, a ScyllaDB NoSQL database cluster was set up on multiple virtual

machines to provide a highly available, horizontally scalable backend for applications

requiring low-latency and high-throughput data access. The deployment focused on

creating a basic multi-node cluster with replication and internal communication enabled

between the nodes.

34

Key Steps and Configuration:

Provisioned two Linux-based virtual machines with private and public IP
addresses for the ScyllaDB nodes.

Installed the latest ScyllaDB Enterprise/Open Source version on both VMs.
Configured scylla.yaml on each node to: Assign cluster name and seed nodes,
Bind to the correct IP address, Enable gossip protocol for node discovery

Started Scylla services on both nodes and verified cluster formation via nodetool

status.
Steps:-

sudo mkdir -p /etc/apt/keyrings
sudo gpg --homedir /tmp --no-default-keyring --keyring
/etc/apt/keyrings/scylladb.gpg --keyserver hkp://keyserver.ubuntu.com:80
--recv-keys a43e06657bac99e3
sudo wget -O /etc/apt/sources.list.d/scylla.list
http://downloads.scylladb.com/deb/debian/scylla-2025.1.list
sudo apt-get update
sudo apt-get install -y scylla
sudo apt-get update
sudo apt-get install -y openjdk-11-jre-headless
sudo update-java-alternatives --jre-headless -s java-1.11.0-openjdk-amd64
Configure and Run ScyllaDB

Configure the following parameters in the /etc/scylla/scylla.yaml configuration file.
cluster_name - <Name>
seeds - The IP address of the first node
listen_address - The IP address that ScyllaDB uses to connect to other nodes in the
cluster.
rpc_address - The IP address of the interface for CQL client connections.
sudo scylla_setup
sudo systemctl start scylla-server

nodetool status

35

Zellj (jumping-peach) - root@master-1: fetc/scylla

Zellij (jumping-peach)

root@master-1: /etc/scylla ——MMmFF —— —— —— — — — ————————————————————————————— SCROLL:

:/etc/scylla# nodetool status

|/ State=Normal/Leaving/Joining/Moving

- Address Load Tokens Owns Host ID Rack
UN 192.168.148.77 265.9 KB 256 ? 2ach6d33-09c3-47cd-83b2-462f@ccaa85d RAC2
UN 192.168.130.98 212.01 KB 256 ? da26c@ec-d@0dc-4323-ae6d-2545773d8096 RACL

Note: Non-system keyspaces don’'t have the same replication settings, effective ownership information is meaningless
root@master-1:/etc/scylla#

Figure 3.17: Verifying the status of the scylla db cluster
3.5.4. Minio For Object Based Storage.

As part of this task, MinlO was deployed on a local Linux host to serve as a
high-performance, S3-compatible object storage system, enabling structured and
unstructured data storage, such as files, backups, and application assets. Additionally,
bucket-level replication was configured so that objects uploaded to one bucket are

automatically replicated to another, simulating a high-availability or backup-ready setup.

i) Installation and Setup

MinlIO was installed in standalone mode using the official Linux binary:
e A dedicated directory (~/minio) was created for storage.

MinlO server was launched with:

minio server ~/minio --console-address :9001

e Accessed via:
o API: http://127.0.0.1:9000
o Console: http://127.0.0.1:9001
e Default credentials minioadmin:minioadmin were used during initial login and

later secured.

36

08/2836

ii) Bucket Creation and Policy Setup

e Created two buckets:
o Source bucket: 0Osauravnew
o Target bucket: 00sauravnewmain
e Applied a custom replication policy (replication-policy.json) using MinlO's
S3-compatible API.
e Granted necessary permissions in the policy for replication actions such as

s3:ReplicateObject, s3:PutObject, and s3:DeleteObject.
iii) Replication Configuration
Set up server-side replication using MinlO's built-in functionality:

e Defined a JSON-based replication policy that:
o Watches OOsauravnew (source)
© Automatically replicates all changes (put, delete, tags) to
OOsauravnewmain (target)

e Applied the replication configuration using the mc (MinlO Client) or SDK.
Example snippet of replication policy:

{
"Effect": "Allow",

"Action": ["s3:ReplicateObject", "s3:ReplicateDelete", "s3:ReplicateTags"],

"Resource": ["arn:aws:s3:::00sauravnew/*" |

}
iv) Python SDK Integration and Automation
Developed a Python automation script (file_uploader.py) using MinlO Python SDK:

e Uploaded objects with custom metadata and tags.

e Enabled optional retention and legal hold policies.

e Automatically verified replication by listing objects in the target bucket after
upload.

e Generated pre-signed URLs for controlled public access to objects.

v) Monitoring and Administration via CLI

37

Installed the MinIO Client (mc):
e Used mc alias set to connect to the local MinlO instance.
Verified bucket and object replication using:

mc admin info local && mc 1s local/00sauravnewmain

Zelli (adept yak) - sauravkarki@hamropatro:/tmp v o x

2e111] (adept-yak) rab 2 0Tl #a) va %4

(minio-venv) [sauravkarki@hamropatro minio]$
(minio-venv) [sauravkarki@hamropatro minio]$ python file_uploader.py
Retention not available in this MinIO SDK version. Skipping retention and legal hold.

=== Buckets and Objects Before Upload ===
=== Buckets ===

Bucket: @@sauravnew (Created: 2025-86-24 05:11:15.298000+00:00)
Object: my-test-file.txt
Last Modified: 2025-86-24 ©05:11:15.303000+00:00
Size: @ bytes
ETag: d41d8cd98f00b204e9800998ecf8427e
Content Type: None
Version ID: None
Metadata: {}
Tags: {}

Bucket: @@sauravnewmain (Created: 2025-06-24 ©5:23:30.175000+00:00)
Object: my-test-file.txt

Last Modified: 2025-06-24 ©5:37:02.010000+00:00
Size: 26 bytes
ETag: @6aa3765cf8faf388076fff351c7319d
Content Type: None
Version ID: None
Metadata: {'x-amz-meta-environment': 'Development’', 'x-amz-meta-project': 'TestProject
Tags: {'Category': 'Test', 'Owner': 'sauravkarki'}

'x-amz-meta-uploadedby': 'sauravkarki'}

Bucket: @@test (Created: 2025-06-24 04:05:57.038000+00:00)
Object: my-test-file.txt
Last Modified: 2025-06-24 85:02:49.693000+00:00
Size: @ bytes

Figure 3.18: Verifying the files in the bucket

" 2allj (adeptyak) - sauravkarki@hamropatro: tmp

Zellij (adept-yak) Tab #2

Metadata: {}

Tags: {}
(minio-venv) [sauravkarki@hamropatro minio]$
(minio-venv) [sauravkarki@hamropatro minio]$ mc admin info local
® localhost:9000

Uptime: 1 hour

Version: 2025-06-13T11:33:477

Network: 1/1 OK

Drives: 1/1 oK

Poel: 1

Pool Drives Usage Erasure stripe size Erasure sets

646 KiB Used, 3 Buckets, 4 Objects
1 drive online, @ drives offline, EC:0

(minic-venv) [sauravkarki@hamropatro minio]$ |EEETVGEEEC RNy

(minio-venv) [sauravkarki@hamropatro minio]$ ps aux | grep minio
sauravk+ 4186 ©.1 1.9 1534772 317608 pts/3 S1+ ©9:48 0:26 minio server /home/sauravkarki/minio --console-address :90@1
sauravk+ 13193 0.0 0.0 6708 4256 pts/4 S+ 11:39 @:00 grep --color=auto minio
(minio-venv) [sauravkarki@hamropatro minio]$ mc version info local/@@sauravnewmain
mc version info local/@@sauravnew
lewmain is un-versioned
auravnew is ur rsioned
(minie-venv) [sauravkarki@hamropatro minio]$ mc alias set local http://localhost:90@@ minioadmin minioadmin

local

Added "loca uccessful
(minio-venv) [sauravkarki@hamropatro minio]$ mc version enable local/@@sauravnewmain
mc version enable local/@@sauravnew

Figure 3.19: Verifying the bucket

38

B 2 4 11 0 F 200 4 4 x 4+

< (@) [l @ localhost:3001/browser/D0sauravnew <9 2 OB & e = ‘ <

Object Browser Q start typing

OO0sauravnew

o+
I

Show deleted objects
- Name Last Modified size
B another-test-file.txt Today, 13:15
I lab-lopics-NSA pdf Today, 11:53 878 KiB
B my-test-file.txt Today, 11:53 2608

I terraformum.tf Today, 13:17

[1 @ localhost:3001/browser/00sauravnewmain

Object Browser

OOsauravnewmain

Show deleted objects
« Name
B another-test-file.txt
By lab-topies-NSA pdf
B my-test-file.txt

I terraformym.f

Q

Last Modified
Teday, 13:15
Today, 11:53
Today, 11:53

Teday, 1317

Figure 3.20: Verifying the replication of files in a bucket

(v, 4 DOB ¢ e
> |[+]

87.8 KiB

2608

3.5.5. Deployed Envoy Gateway as Ingress Controller in RKE2 Kubernetes Cluster.

Envoy Gateway was deployed in an RKE2 cluster to serve as a modern, scalable ingress

controller. Envoy Gateway provides dynamic traffic routing, security, observability, and

extensibility, making it ideal for cloud-native microservices architecture.

i) Helm-Based Deployment of Envoy Gateway

Envoy Gateway was installed using the official Helm chart from DockerHub:

helm install eg oci://docker.io/envoyproxy/gateway-helm \

--version v1.4.2 \
-n envoy-gateway-system \
--Create-namespace

Key setup steps included:

e C(Created a dedicated namespace: envoy-gateway-system

e Installed the Gateway API CRDs (Custom Resource Definitions) for defining

GatewayClass, Gateway, and HTTPRoute

e Waited for the envoy-gateway deployment to become available and healthy

ii) Gateway Configuration

Applied the official quickstart.yaml to:

39

e Register the GatewayClass that specifies Envoy as the controller
e C(Create a Gateway resource that listens on port 80

e Define HTTPRoute objects to route incoming traffic to backend services
iii) CRDs and Advanced Installation Options

e Gateway API CRDs and Envoy Gateway-specific CRDs were installed with
fine-grained control using helm template and kubectl apply, to avoid Helm

limitations with large CRDs.

helm template eg oci://docker.io/envoyproxy/gateway-crds-helm \
--version v1.4.2 \
--set crds.gatewayAPI.enabled=true \
--set crds.gatewayAPI.channel=standard \

--set crds.envoyGateway.enabled=true | kubectl apply --server-side -f -

iv) Helm Customization and Resource Configuration

To optimize the deployment, a custom values.yaml file was used to:

e Increase CPU and memory limits for better performance

e Enable gRPC and rate-limiting ports for future extensibility
e Set logging level to debug for troubleshooting.

Pods - old-daflas-ctx

Figure 3.21: Lens Dashboard showing envoy gateway deployment

40

Chapter 4: Conclusion and Learning Outcomes

4.1. Conclusion

In conclusion, the internship at Smart Ideas Pvt.Ltd (Hamro Patro) as a DevOps
Intern exposed me to various aspects of DevOps. The internship has been a valuable
and enriching experience, allowing me to apply the theoretical knowledge gained
throughout my academic journey into a real-world software development
environment. This included knowledge gained in diverse DevOps areas like
deployment of websites with SSL/TLS certificate, Virtual Machine networking,
containerization and utilizing Kubernetes (K3s, RKE2) for container orchestration,

implementation of monitoring tools such as Prometheus and Grafana.

Practical tasks were done using theoretical knowledge acquired from the program. At
the end of it all, adopting different DevOps methodologies that were learnt brought
about better system performance and reliability. With the help of mentors and other
colleagues, my interpersonal skills were also sharpened during this internship period

henceforth having a huge positive influence on me both professionally and personally.

4.2. Learning Outcome
Here are the key areas where I gained substantial knowledge and practical experience:

1. Technical Skills

Developed my technical skills like operating system troubleshooting, managing
bare metal infrastructure, automating repeated tasks with bash script. Got the
opportunity to dig deep into using linux command line as well as monitoring tools
like monit, prometheus, and grafana. Learned about monitoring various processes
of linux and sending email alerts if needed. Along with this various other tools

like ansible, used for DevOps were learned.

2. Professional Development

Enhanced the ability to work effectively in a team oriented environment. Problem
solving skills were improved by addressing realworld technical challenges and
implementing practical solutions. Professional growth was further shaped by the

mentorship and guidance received from experienced professionals.

41

3. Time Management

5.

Effective time management was crucial during the internship, as multiple tasks
were assigned simultaneously. Work was prioritized, achievable goals were set,

and deadlines were consistently met.

Documentation

The importance of thorough documentation was emphasized throughout the
internship. Detailed records of configurations, processes, and performance metrics
were maintained, ensuring transparency and reproducibility. Comprehensive
reports and documentation were compiled to communicate project progress,

improving technical writing and communication skills.

Continuous Learning

A habit of continuous learning was cultivated during the internship, encouraging
the intern to stay updated with the latest industry trends and advancements. Self
Directed learning was regularly engaged in, exploring new tools and technologies

to enhance existing systems and processes

42

References

Ebert, Christof, Gallardo, Gorka, Hernantes, et al. (2016). DevOps. IEEE Software,33(3),
94-100. https://doi.org/10.1109/MS.2016.68

Hamro Patro. (2010). About Hamro Patro. https://www.hamropatro.com/about

Farley, J., David;Humble. (2015). Continuous Delivery: Reliable Software Releases
Through Build, Test, and Deployment Automation) (Tenth printing, Vol. 0).
AddisonWesley Professional.

KALEN WESSE, D. &. S. (2018). A Day in the Life of a DevOps Engineer.

Len Bass,L. Z.,Ingo Weber. (2015). DevOps: A Software Architect’s Perspective (1st ed.,
Vol. 0). AddisonWesley Professional.

N, S. (2020). Automation of Software Development using DevOps and its Benefits.
International Journal of Engineering Research and, .
https://doi.org/10.17577/1IJERTVIIS060369

Senapathi, M., Buchan, J., & Osman, H. (2019). DevOps Capabilities, Practices, and
Challenges: Insights from a Case Study. Corr. http://arxiv.org/abs/1907.10201

43

https://doi.org/10.1109/MS.2016.68
https://www.hamropatro.com/about
https://doi.org/10.17577/IJERTV9IS060369

Appendices

O ssHandc) iamsaura: ¥ Cassandr= | G nginxdep € sabeikoav = @@ DeployRe

@ mstall s, ¥ NginxDer @ Soapsv | @ nstalis | @ Settingup [Sabeikorr 9 Howtose [l saber x [sabeiokc + v o @ X
] » @ [0 = sabeikoksaurav.com.np

@ <|Q £ ED0R: @ =

Your Submissions

Title Department ~ Status Date
Thisis
sacond Educaton pending 2/10/2025.
1:27:22PM
complaints

Thisistest Home

ding 71012025,
complaints Affairs. pending

1:25:07PM

Deployed website with nginx and custom domain setup

€ ubuntuz-Me % @ SimpleNotesMs | @ 4579.121.155:31

@ s @ i @ sl o @ Simple Notes Ma/ | ¥ Kubernetesingre | () PersonalAccess | () lamsauravkarkis | + v _ @ x
<> e [0 % doudlinode.comlinodes/73619266 <P L O0E & e =
Last 4 rio =
compuTe
CPU (%) Disk 1/O (blocks/s)
100 126
e E
3
50
ES
25
03FM 08 FM 01 AM 06 AM 1AM
o
03PM 08 PM o1AM 06 AM 1AM Max vy Last
Max Avg Last VORate 1093598 6270 1090
W cruw 89.55% 1505% 2576 % M Swop Rate 43531 533 036
Network — IPv4 (Kbfs) Network — IP6 (Mbfs)
800 s
600 6
400 it
200 2
| PP "
03PM 08 PM o1AM 06 AM 1AM 03P 08PM o1AM 06 AM 1AM
Max A Last Max A Last
W Fubiicin 7948 Kbis 39.79 Kbis 5433 Kbis I Publicin 297 Mbis 10634 Kbis 1o
[Public out 48194 Kbls 27.5 Kbls 55.11 Kbl [PublicOut 1149 Kbfs 209bks 1bls
Private In 34282 Kbis 24.45 Kbis 2582 Kbis Private In obs o obhs
Help & Support
Private Out 5427 Kbls 25.12Kbis 2566 Kbis Private Out obs obis obis
VL1450 APIReference Provide Feedback © 2025 Akamai Technologies, Inc. All Rights Rezerved

Linode Cloud VM Resources Usage

44

B 25th of Asadh

<

be

@

‘® local
Cluster
Workloads

CronJobs

Daemonsets

Deployments

Jobs

StatefulSets

Pods
Aops

Charts

Installed Apps

Repositories

Recent Operations
Service Discovery
Storage
Policy

More Resources

& first commit - terraform |

<

@

spacelift#

08

v e B

=

T PR o a s

)

®

b 7

Dashboard
Stacks

Blueprints
Terraform registry
Runs

Spaces

Resources

Policies

Contexts

Worker pools
Webhooks

Source code

Cloud integrations

ServiceNow

LaunchPad
Notification Inbox
Help &Feedback >

Saurav Karki

auravkarks

v o_oe ox

BoLAOBES =

Age
6hours
6hours
1day

24nours,

1day

@ simplified view

© (75) RBAC in Kubermetes - YouT | ‘& Instal/Upgrade Rancherona k. % Kubernetes RBAC Authenticatic M¥ Rancher -local - Pods X G rbacinkubernetes - Google Se. | (0 Kubernetes 1.33 | Playgrounds | +
(] ©Notsecure hitpsi/45.79.122.157:32695/dashboard/c/local/explorer/ped < Q 2
Only User Namespaces v 1y B B O m
>
+ Pods
“o
“3
State Name, Namespace Image Ready Restarts 3 Node
“o
@ bankapp-7794d7bédd5 webapps adjeiswal/bankapp:v20 22 o 1042052 ocalhost
Roing) mysal-57b97d8866 webapps mysqt6.0 22 o 1042051 ocalhos
Fwing) vault vauit hashicorp/vault:1.19.0 171 o 1042035 ocalhos
1 < o var hashicomivauit:1190 o o <none>
3 ption: /1 nodes e available: 1No preemption victims found for ncoming pod.
e (Runing) vault hashicorp/vault-kB5:1.6.2 " o 1042034 ocalhos
>
>
>
>
O lam i 1AM | ¢ | [Instances | EC2 | us-eastd © spaceliftprojectitf-ansiblestack | @@ localhostB080 @ Simple Notes Maker +
[0 % sauravkarkiapp.spacelift 1y /CPGNRZ4 o< P
Stacks + temaform » frst commit
« first commit EEEELE
 sawavconsole ¥ 157 >_ ti-ansible-stack-dependenciestt % main o 9d17c35 G Started on Jul 1st, 11:00:14 AM by sauravkarkil02@gmail.com G Committed on Jul 1st, 10:45:04 AM State manage
@ Tracked
History.
Run history
Share your thoughts

© - reeiving () - 0101 - list 110156 AM

aws_instance . this["instanced” creating... [30s elapsed]
aws_instance. this["instance3” creating... [30s elapsed]

-06c30671674413¢F]
aTbe 750203633]

Apply complete! Resources: 5 added, @ changed, ® destroyed
Outputs:
aws_instances = [
86.114.214",
“52.1.234.85",
5¢.208.57.219",
"52.87.241.113",

1
[0171INMBUHKSASHEHSTG1DDVS] Changes applied successfully
[0121INMBAHKSASNEHS7G10DVS] Uploading the list of managed resources..

Stop

Confirmed by sauravkarki102@gmail.com = 00:02 » Jul 1st, 1101:45 AM

1, 11:00:34 A

> Planning « 0045 + Ju

> Initializing = 00:17 = Jul1st, 11:00:21 AM

Queued - 0

0 - Jul 1st, 11:00:14 AM

60000

A+ S Swp

Comment

& Download logs.

Spacelift Dashboard For Infrastructure Creation and Configuration in AWS

45

a pdated_not: K ancer External I . dh W vault x @b

[1 & Notsecure 4579.122.157:8200/uiMvaultsecrets/secret/kvilist

secrel

secret vesonz

Secrets Configuration

1t p Q search Create secret +
£ data/
[frontend
mysql
Rat Storage D mysq
Client Count > 1303

Seal Vault

- cssipiity) © 2025 HashiCorp

Vaull 1190 Upgrag

e EC2 > Instances @ e F

Dashboard < Instances (6) iafo
EC2 Global View

-
(Instance state ¥

Actions ¥ ;l Launch instances ¥

[@ Find instanc | Austates v | 3 8
Events =
itk (] | Name & ¥ | Instance ID | Instancestate ¥ | Instancetype ¥ | Statuscheck Alarmstatus | Availability Zone ¥ | Public ¥
nstances
R "] sonarqube i-0d2e1db2beal5279a @Running & @ t2.medium @ 2/2 checks passec View alarms + us-east-Tc ec2-3-8t
Instance Types [| my-eks22-.. & | i-0ba07a26f84f427b6 @Running & @ t2.medium @ 2/2 checks passec View alarms + us-east-1b ec2-3-2.
Launch Templates 1 jenkins i-05febaB84ef2c870c @rRuming @ @ t2large @ 2/2checks passec View alarms 4+ us-east-1a ec2-54-;
Spot Requests 7 local-deploym... i-081d880fBadeabead @ Rumning @ @ 2. medium @ 2/2 checks passec View alarms + us-east-1d ec2-54-¢
Savings Plans O myeks22-ned... i-06fe054923057d3e © Running @ @ 2.medium @ 2/2 checks passec View alarms 4+ us-east-1a ec2-52-
Reserved Instances
my-eks22-ned... i-0bf12b888d21ded8b @FRumning @ @ 2.medium @ 2/2checkspassec View alarms 4+ us-east-1a ec2-54-
Dedicated Hosts -
Capacity Reservations
¥ Images
AMIs =
Select an instance v
AMI Catalog @
¥ Elastic Block Store
Velumes
Snapshots
Lifecycle Manager
¥ Network & Security

Securitv Grouns -

AWS Console showing different EC2 server for different services

46

