
​Tribhuvan University​

​Amrit Campus​

​An Internship Report​

​On​

​“ DevOps Engineer ”​

​At​
​Smart Ideas​​Pvt. Ltd (Hamro Patro)​

​Submitted to :​

​Department of Computer Science and Information Technology​

​In the partial fulfillment of the requirements for the Bachelor’s Degree in Information​

​Technology awarded by IOST, Tribhuvan University​

​Submitted by​

​Saurav Karki (T.U. Exam Roll No. BIT 362/077)​

​Under the Supervision of​

​Janak Raj Joshi​

​MENTOR’S RECOMMENDATION​

​I​​hereby​​recommend​​that​​this​​internship​​report​​prepared​​by​​Saurav​​Karki​​(​​TU​​Roll​​NO:​
​BIT​ ​362/077​​)​ ​from​ ​Amrit​ ​Campus,​ ​Thamel​​,​ ​under​ ​my​ ​mentorship​ ​entitled​ ​“DevOps​
​Engineer”,​ ​in​ ​partial​ ​fulfillment​ ​of​ ​the​ ​requirement​ ​for​ ​the​ ​degree​ ​of​ ​Bachelor​ ​in​
​Information Technology​​of​​Tribhuvan University,​​be​​processed for evaluation.​

​…………………………​

​Mr.​​Shital Kumar Nyaupane​

​Mentor​

​Smart Ideas Pvt.Ltd (Hamro Patro)​

​Sifal, Kathmandu​

​ⅰ​

​SUPERVISOR’S RECOMMENDATION​

​I​​hereby​​recommend​​that​​the​​report​​entitled​​“​​An​​Internship​​Report​​on​​DevOps​​Engineer​
​at​ ​Smart​ ​Ideas​ ​Pvt.Ltd​​”​​,​ ​prepared​ ​under​ ​my​ ​supervision​ ​by​ ​Saurav​ ​Karki​ ​in​ ​partial​
​fulfillment​ ​of​ ​the​ ​requirements​​for​​the​​degree​​of​​Bachelor​​in​​Information​​Technology​​of​
​Tribhuvan University, be processed for evaluation.​

​………………………​

​Janak Raj Joshi​

​Supervisor​

​Department of Computer Science and Information Technology​

​Amrit Campus​

​Lekhnath Marg, Thamel​

​ⅱ​

​LETTER OF APPROVAL​

​This​ ​is​ ​to​ ​certify​ ​that​ ​this​ ​internship​ ​report​​prepared​​by​​Saurav​​Karki​​entitled​​“An​
​Internship​ ​Report​ ​On​ ​DevOps​ ​Engineer​ ​at​ ​Smart​ ​Ideas​ ​Pvt.Ltd”​ ​has​ ​been​

​submitted​ ​to​ ​the​ ​Department​ ​of​ ​Information​ ​Technology​ ​for​ ​acceptance​ ​in​ ​partial​

​fulfillment​ ​of​ ​the​ ​requirements​ ​for​ ​the​ ​degree​ ​of​ ​Bachelors​ ​in​ ​Information​

​Technology.​​In​​our​​opinion,​​it​​is​​satisfactory​​in​​the​​scope​​and​​quality​​as​​an​​internship​

​for the required degree​​.​

​……….………….​

​External Examiner​

​…..…..…………..​

​Asst. Prof. Dhirendra Kumar Yadav​

​Project Coordinator​

​Department of CSIT​

​ⅲ​

​ACKNOWLEDGEMENT​

​I​ ​would​ ​like​ ​to​ ​express​ ​my​ ​deepest​ ​appreciation​​to​​all​​those​​who​​provided​​me​​with​​the​
​possibility​ ​to​ ​complete​ ​this​ ​internship​ ​report.​ ​Special​​gratitude​​to​​my​​supervisor​​Janak​
​Raj Joshi​​for the complete support and guidance throughout​​the internship period.​

​Also,​ ​I​ ​would​ ​like​ ​to​ ​express​ ​my​ ​special​ ​gratitude​ ​to​ ​our​ ​Program​​Coordinator,​​Akkal​
​Bista​ ​and​ ​administrative​ ​staff​ ​whose​ ​all​​ ​time​ ​encouragement​ ​helped​​me​​coordinate​​the​
​internship tasks systematically.​

​I​​would​​like​​to​​express​​my​​sincere​​thanks​​to​​mentors​​Mr.​​Shital​​Kumar​​Nyaupane​​,​​Mr.​
​Paritosh​ ​Bhattarai​ ​and​ ​Mr.​ ​Saurab​ ​Tharu​ ​of​ ​Smart​ ​Ideas​ ​Pvt.​ ​Ltd​ ​for​ ​sharing​ ​their​
​valuable​ ​knowledge​ ​and​ ​guiding​ ​me​ ​during​ ​the​ ​internship​ ​period,​​and​​making​​me​​learn​
​new​ ​skills​ ​and​ ​abilities.​ ​I​ ​am​ ​also​ ​grateful​ ​to​ ​the​ ​entire​ ​staff​ ​of​ ​Smart​ ​Ideas​ ​Pvt.​ ​Ltd​
​(Hamro Patro) for their constant support, guidance and opportunity.​

​With​​all​​due​​respect​​and​​gratitude,​​I​​would​​like​​to​​give​​a​​word​​of​​thanks​​to​​the​​members​
​of the IT department of Amrit Campus, who encouraged me to perform work activities.​

​With Regards,​

​Saurav Karki (BIT 362/077)​

​ⅳ​

​ABSTRACT​

​This​ ​report​ ​summarizes​ ​the​ ​DevOps​ ​Engineer​​internship​​at​​Smart​​Ideas​​Pvt.Ltd​​(Hamro​

​Patro),​ ​where​ ​the​ ​focus​ ​was​ ​on​ ​infrastructure​ ​setup,​ ​service​ ​deployment,​ ​and​ ​system​

​orchestration.​ ​Key​ ​responsibilities​ ​included​ ​setting​ ​up​ ​CI/CD​ ​pipelines,​ ​Setting​ ​up​ ​and​

​Deploying​ ​websites​ ​to​ ​kubernetes​ ​cluster,​ ​automating​ ​deployments,​ ​and​ ​setting​ ​up​

​virtualization​ ​using​ ​Proxmox​ ​with​ ​bare-metal​ ​as​ ​well​ ​as​ ​cloud​ ​infrastructure.​ ​Practical​

​experience​ ​was​ ​gained​ ​in​ ​configuring​ ​ScyllaDB​ ​and​ ​PostgreSQL​ ​clusters,​ ​creating​

​reusable​ ​VM​ ​templates,​ ​and​ ​managing​ ​containerized​ ​workloads​ ​using​ ​Kubernetes​

​(RKE2,K3s),​ ​Implementing​ ​proper​ ​devops​ ​practices​ ​to​ ​deploy​ ​3-tier​ ​applications​ ​into​

​EKS cluster.​

​Tools​ ​such​ ​as​ ​Helm​ ​(with​ ​custom​ ​CRDs),​ ​Flux​ ​CD,​ ​and​ ​MetalLB​ ​were​ ​used​ ​for​

​declarative​​deployments​​and​​load​​balancing.​​Additional​​components​​like​​Envoy​​Gateway,​

​NATS​ ​messaging,​ ​STUN/TURN​ ​servers,​ ​and​ ​Temporal​ ​service​ ​orchestration​ ​were​ ​also​

​integrated​​to​​support​​distributed​​systems.​​The​​internship​​fostered​​a​​deeper​​understanding​

​of​ ​the​ ​DevOps​ ​culture​ ​emphasizing​ ​automation,​ ​collaboration,​ ​and​ ​continuous​

​improvement while bridging development and operations workflows.​

​Keywords:​ ​DevOps,​ ​CI/CD,​ ​Proxmox,​​Kubernetes,​​ScyllaDB,​​PostgreSQL,​​Helm,​​Flux​

​CD, MetalLB, NATS, Temporal, containerization.​

​ⅴ​

​TABLE OF CONTENTS​

​MENTOR'S RECOMMENDATION ...i​

​SUPERVISOR'S RECOMMENDATION ..ii​

​CERTIFICATE OF APPROVAL ...iii​

​ACKNOWLEDGEMENT ...iv​

​ABSTRACT ...v​

​LIST OF FIGURES ...viii​

​LIST OF TABLES .. x​

​LIST OF ABBREVIATIONS ..xi​

​Chapter1: Introduction​​…………………………………………………………………..1​

​1.1. Introduction…………………………………………………………………...1​

​1.2. Problem Statement……………………………………………………………2​

​1.3. Objectives…………………………………………………………………….3​

​1.4. Scope and Limitation…………………………………………………………3​

​1.5. Report Organization…………………………………………………………..4​

​Chapter 2: Background Study and Literature Review………………………………..6​

​2.1. Introduction to Organization………………………………………………….6​

​2.2. Organizational Hierarchy……………………………………………………..7​

​2.3. Working Domains of Organization…………………………………………...8​

​2.4. Description of Intern Department…………………………………………….9​

​2.5. Literature Review……………………………………………………………..9​

​Chapter 3: Internship Activities………………………………………………………..11​

​3.1. Roles and Responsibilities…………………………………………………...11​

​3.2. Weekly log…………………………………………………………………...11​

​3.3. Description of the Project(s) Involved During Internship…………………...14​

​3.4. Description of Tools Used…………………………………………………...28​

​3.5. Tasks/Activities Performed………………………………………………….31​

​ⅵ​

​Chapter 4: Conclusion and Learning Outcomes……………………………………...41​

​4.1. Conclusion…………………………………………………………………...41​

​4.2. Learning Outcome…………………………………………………………...41​

​References ... 43​

​Appendices .. 44​

​ⅶ​

​LIST OF FIGURES​

​Figure 1.1 : DevOps Lifecycle …………………………………………………………..​​1​

​Figure 2.1 : Organizational Hierarchy……………………………………………………..​​7​

​Figure 3.1 : Architecture Diagram of Project on Containerized and deployed java……..16​

​spring boot application into docker containers.​

​Figure 3.2: Docker compose up Steps……………………………………………………17​

​Figure 3.3: Verifying the Running Containers…………………………………………...17​

​Figure 3.4: Accessing the deployed spring boot app from public ip……………………..18​

​Figure 3.5: Verifying the data stored in postgresql db container…………………………18​

​Figure 3.6 : Architecture Diagram of Project on End-to-End CI/CD Deployment………22​

​of YelpCamp on AWS using Docker & Kubernetes​

​Figure 3.7 : CICD Pipeline for the application in Jenkins……………………………….23​

​Figure 3.8 : Final Deployed web application…………………………………………….23​

​Figure 3.9 : Architecture Diagram of Deployment of Java Micronaut Web……………..24​

​Application into k3s kubernetes cluster with custom domain , ssl certificates​

​and monitoring with prometheus, grafana, and newrelic.​

​Figure 3.10 : Kubernetes manifest structure of the project………………………………25​

​Figure 3.11 : Details of the nodes and running resources in k8s cluster…………………25​

​Figure 3.12 : Final Deployed Three Tier notes maker app with SSL certificates and 26​

​Custom Domain.​

​Figure 3.13 : Grafana Dashboard for application metrics monitoring…………………...27​

​Figure 3.14 : Lens Dashboard for Cluster Management…………………………………27​

​Figure 3.15 : New Relic Dashboard for K8s cluster and resource monitoring…………..28​

​Figure 3.16: Portainer Dashboard for container management…………………………...34​

​ⅷ​

​Figure 3.17: Verifying the status of the scylla db cluster………………………………...36​

​Figure 3.18: Verifying the files in the bucket……………………………………………38​

​Figure 3.19: Verifying the bucket………………………………………………………..38​

​Figure 3.20: Verifying the replication of files in a bucket……………………………….39​

​Figure 3.21: Lens Dashboard showing envoy gateway deployment…………………….40​

​ⅸ​

​LIST OF TABLES​

​Table 2.1 : Company Details…………………………………………………………...​​7​

​Table 3.1 : Weekly Log………………………………………………………………..​​12​

​ⅹ​

​LIST OF ABBREVIATIONS​

​AWS: Amazon Web Services​

​CI/CD: Continuous Integration and Continuous Deployment​

​CRDs: Custom Resource Definitions​

​EC2: Elastic Compute Cloud​

​EKS: Elastic Kubernetes Service​

​ELK: ElasticSearch, Logstash, Kibana​

​JAR: Java Archiever​

​K8s: Kubernetes​

​LXC: Linux Containers​

​RBAC: Role Based Access Control​

​RKE2: Rancher Kubernetes Engine​

​S3: Simple Storage Service​

​SDK: Software Development Kit​

​SSL: Secure Socket Layer​

​UFW: Uncomplicated Firewall​

​VM: Virtual Machines​

​VPN: Virtual Private Networks​

​YAML: Yet Another Markup Language​

​ⅺ​

​Chapter 1: Introduction​

​1.1. Introduction​

​The​ ​internship​ ​experience​ ​at​ ​Smart​​Ideas​​Pvt.​​Ltd.​​(Hamro​​Patro)​​offered​​a​​valuable​

​opportunity​ ​to​ ​gain​ ​practical​ ​exposure​ ​to​ ​DevOps​ ​methodologies​ ​in​ ​a​ ​real-world​

​organizational​​setup.​​During​​the​ ​course​​of​​my​​DevOps​​internship,​​the​​chance​​was​​given​

​to​​fully​​adopt​​the​​DevOps​​culture​​and​​observe​​how​​it​​has​​been​​used​​effectively​​to​​bridge​

​the​​gap​​between​​software​​development​​and​​IT​​operations.​​DevOps​​defines​​the​​collection​

​of​ ​practices​ ​that​ ​combines​ ​software​ ​development​ ​(Dev)​ ​team​ ​and​ ​IT​ ​operations​ ​(Ops)​

​team​ ​to​ ​shrink​ ​the​ ​software​ ​development​ ​life​ ​cycle​ ​and​ ​provide​ ​high​ ​quality​ ​software​

​permanently (Senapathi et al., 2019).​

​The​ ​main​ ​duty​ ​of​ ​a​ ​DevOps​ ​engineer​ ​includes​ ​understanding​ ​the​ ​implementation​ ​of​

​DevOps​ ​practices​ ​to​ ​automate​ ​and​ ​simplify​ ​different​ ​parts​ ​of​ ​the​ ​software​ ​delivery​

​process.​ ​This​ ​requires​ ​creation​ ​as​ ​well​ ​as​ ​optimization​ ​of​ ​Continuous​

​Integration/Continuous​ ​Deployment​ ​(CI/CD)​ ​pipelines​ ​which​ ​automate​ ​integration​ ​of​

​code​​changes​​frequently​​and​​reliably​​should​​be​​deployed;​​they​​are​​important​​in​​reducing​

​time​to​market​ ​while​ ​increasing​ ​overall​ ​development​ ​team’s​ ​productivity​ ​(KALEN​

​WESSE,​ ​2018).​ ​This​ ​internship​ ​served​ ​as​ ​a​ ​foundational​ ​experience​ ​to​ ​explore​ ​these​

​DevOps​ ​practices​ ​in​ ​depth,​ ​contributing​ ​to​ ​a​ ​better​ ​understanding​ ​of​​how​​infrastructure​

​automation,​ ​containerization,​ ​monitoring,​ ​and​ ​continuous​ ​delivery​ ​contribute​ ​to​​modern​

​software engineering workflows.​

​1​

​Figure 1.1 : DevOps Lifecycle​

​As​ ​a​ ​member​ ​of​ ​the​ ​DevOps​ ​team,​ ​my​ ​primary​ ​responsibility​ ​was​ ​to​ ​learn​ ​how​ ​to​
​streamline​ ​and​ ​enhance​ ​both​ ​the​ ​development​ ​and​ ​operational​ ​workflows​ ​so​ ​that​ ​the​
​underlying​ ​systems​ ​could​ ​be​ ​made​ ​robust,​ ​efficient,​ ​and​ ​scalable.​ ​I​ ​gained​ ​hands-on​
​experience​ ​in​ ​managing​ ​CI/CD​ ​pipelines,​​automating​​deployment​​processes,​​and​​setting​
​up virtualization using Proxmox with bare-metal servers.​

​There​​was​​also​​an​​opportunity​​to​​work​​with​​containerized​​environments​​using​​Kubernetes​
​(RKE2)​ ​for​ ​orchestrating​ ​microservices​ ​and​ ​managing​ ​application​ ​deployments.​ ​Helm,​
​along​ ​with​ ​custom​ ​CRDs,​ ​was​ ​used​ ​for​ ​resource​ ​provisioning,​ ​while​ ​Flux​ ​CD​ ​enabled​
​GitOps-based​​continuous​​deployment.​​MetalLB​​was​​configured​​to​​provide​​load​​balancing​
​for services within the Kubernetes cluster.​

​Further​ ​technical​ ​exposure​ ​included​ ​configuring​ ​ScyllaDB​ ​and​ ​PostgreSQL​ ​clusters,​
​setting​ ​up​ ​infrastructure​ ​observation,​ ​Deploying​ ​web​ ​applications​ ​into​​cloud​​kubernetes​
​clusters,​ ​creating​ ​reusable​ ​virtual​ ​machine​ ​templates,​ ​and​ ​integrating​ ​distributed​​system​
​components​​such​​as​​Envoy​​Gateway,​​NATS​​messaging​​server,​​STUN​​and​​TURN​​servers,​
​and the Temporal service orchestration platform.​

​1.2. Problem Statement​

​Smart​​Ideas,​​like​​many​​tech​​driven​​organizations,​​faced​​challenges​​related​​to​​the​​manual​
​processes​ ​in​ ​software​ ​deployment,​ ​the​ ​scalability​ ​of​ ​their​ ​infrastructure,​ ​and​ ​the​
​efficiency of their operational workflows. The primary issues included:​

​i) Manual Deployment Processes​​:​

​The​ ​existing​ ​deployment​ ​processes​ ​were​ ​largely​ ​manual,​ ​leading​ ​to​ ​inconsistencies,​
​longer deployment times, and higher risk of errors.​

​ii) Limited Infrastructure Scalability​

​As​ ​the​ ​user​ ​base​ ​grew,​ ​the​ ​existing​ ​infrastructure​ ​struggled​ ​to​ ​scale​ ​efficiently.​ ​This​
​impacted system performance, uptime, and overall user satisfaction.​

​iii) Lack of Automation and Monitoring​

​Key​​operational​​tasks​​such​​as​​incident​​response,​​resource​​provisioning,​​and​​performance​

​monitoring​​lacked​​automation.​​This​​led​​to​​slower​​response​​times​​and​​reduced​​operational​

​efficiency.​

​2​

​Addressing​ ​these​ ​problems​​was​​crucial​​for​​maintaining​​Hamropatro’s​​competitive​​edge,​

​ensuring customer satisfaction, and supporting the company’s growth objectives.​

​1.3. Objectives​

​The key objectives included:​

​i)​ ​To​ ​develop​ ​a​ ​solid​ ​understanding​ ​of​ ​the​​DevOps​​lifecycle,​​emphasizing​​collaboration​
​between​ ​development​ ​and​ ​operations​ ​teams,​ ​continuous​ ​integration,​ ​and​ ​continuous​
​deployment (CI/CD).​

​ii)​ ​To​ ​gain​ ​hands-on​ ​experience​ ​in​ ​deploying​ ​and​ ​managing​ ​containerized​ ​applications​
​using​ ​Kubernetes,​ ​along​ ​with​ ​resource​ ​definition​ ​through​ ​Helm​ ​charts​ ​and​ ​Custom​
​Resource Definitions (CRDs).​

​iii)​ ​To​ ​design,​ ​configure,​ ​and​ ​manage​ ​CI/CD​ ​pipelines​ ​for​ ​automated​ ​testing,​ ​building,​
​and deployment of applications, ensuring faster and more reliable software releases.​

​iv)​ ​To​ ​observe​ ​and​ ​gain​ ​real-world​ ​experience​ ​in​ ​production​ ​deployments,​ ​lifecycle​ ​of​
​live​ ​services,​ ​gaining​ ​insights​ ​into​ ​challenges​ ​and​ ​best​ ​practices​ ​in​ ​operational​
​environments.​

​1.4. Scope and Limitation​

​The​ ​scope​ ​of​ ​my​ ​DevOps​ ​internship​ ​at​ ​Smart​ ​Ideas​ ​Pvt.Ltd​ ​production​ ​practices​ ​in​
​modern infrastructure management and software delivery. Key areas included:​

​1.4.1. Scope​

​i) Bare-Metal Server and Virtualization Management​

​Managing infrastructure on physical servers using Proxmox for virtualization.​

​ii) Container Orchestration and Resource Provisioning​

​Deploying​ ​and​ ​managing​ ​Kubernetes​ ​clusters​ ​(RKE2)​ ​to​ ​orchestrate​ ​microservices​ ​and​

​containerized​ ​applications.​ ​Helm​ ​charts​ ​and​ ​Custom​ ​Resource​​Definitions​​(CRDs)​​were​

​used to define and manage Kubernetes resources effectively.​

​iii) Infrastructure Monitoring and Alerting​

​Implementing​ ​observability​ ​tools​ ​such​ ​as​ ​Prometheus​ ​and​ ​Grafana​ ​to​ ​monitor​ ​system​

​performance, visualize metrics.​

​iv) Networking and Load Balancing Configuration​

​Setting​ ​up​ ​MetalLB​ ​for​ ​load​ ​balancing​ ​within​ ​the​ ​Kubernetes​ ​cluster​ ​and​ ​integrating​

​service​ ​mesh​ ​and​ ​proxy​ ​tools​ ​like​ ​Envoy​ ​Gateway​ ​for​ ​efficient​ ​traffic​ ​routing​ ​and​

​security.​

​3​

​v) Distributed Systems Integration​

​Working​​with​​distributed​​components​​such​​as​​ScyllaDB,​​PostgreSQL​​clusters,​​the​​NATS​

​messaging system, STUN/TURN servers, and the Temporal.​

​1.4.2. Limitations​

​Despite the comprehensive scope, there were some limitations during my internship:​

​Time Constraints​​:​

​The​​duration​​of​​the​​internship​​was​​limited,​​which​​restricted​​the​​depth​​of​​exploration​​and​
​implementation of certain advanced DevOps practices and tools.​

​Resource Availability​​:​

​Access​ ​to​ ​certain​ ​hardware​ ​and​ ​software​ ​resources​ ​was​ ​limited,​ ​which​ ​occasionally​
​hindered the implementation and testing of specific solutions on a larger scale.​

​Learning Curve​​:​

​The​​complexity​​of​​some​​tools​​and​​technologies,​​especially​​those​​I​​was​​unfamiliar​​with,​​required​

​significant time to learn, reducing the time available for hands​on application.​

​Assigned Task Scope​​:​

​The​​tasks​​assigned​​were​​predetermined,​​leaving​​limited​​room​​to​​explore​​additional​​areas​

​of personal or emerging interest within the DevOps field.​

​1.5. Report Organization​

​This​ ​report​ ​is​ ​structured​ ​into​ ​four​ ​main​ ​chapters,​ ​each​ ​detailing​ ​different​​aspects​​of​​my​

​internship experience at Hamropatro. Here is a brief overview of each chapter:​

​Chapter 1: Introduction​

​This​​chapter​​introduces​​the​​work​​completed​​during​​my​​internship.​​It​​outlines​​the​​problem​
​statement,​ ​the​ ​objectives​ ​of​ ​the​ ​internship,​ ​the​ ​scope​ ​and​ ​limitations​ ​of​​the​​project,​​and​
​provides an overview of the report’s organization.​

​4​

​Chapter 2: Organization Details and Literature Review​

​In​ ​this​ ​chapter,​ ​a​ ​comprehensive​​introduction​​to​​Smart​​Ideas​​Pvt.Ltd​​has​​been​​provided.​
​This​​includes​​an​​overview​​of​​the​​organization,​​its​​hierarchy,​​the​​various​​domains​​in​​which​
​it​ ​operates,​ ​and​ ​a​ ​detailed​ ​description​ ​of​ ​the​ ​department​ ​where​ ​internship​ ​has​ ​been​
​completed.​ ​Additionally,​ ​this​ ​chapter​ ​includes​ ​a​ ​literature​ ​review​ ​or​ ​related​ ​study,​
​highlighting​ ​relevant​ ​theories​ ​and​ ​frameworks​ ​that​ ​underpin​ ​the​ ​works​ ​that​ ​have​ ​been​
​performed during the internship.​

​Chapter 3: Internship Activities​

​This​​chapter​​delves​​into​​the​​specifics​​of​​my​​internship​​activities.​​It​​outlines​​my​​roles​​and​
​responsibilities,​ ​provides​ ​a​ ​weekly​ ​log​ ​of​​the​​technical​​activities,​​describes​​the​​involved​
​projects,​ ​and​ ​details​ ​the​ ​technical​​tasks​​and​​activities​​have​​been​​completed​​successfully.​
​This section offers an in​depth look at the hands​on experience obtained.​

​Chapter 4: Conclusion and Learning Outcomes​

​A​​brief​​overview​​of​​the​​experience​​gained​​during​​the​​internship​​is​​also​​stated​​in​​this​​last​
​part,​​as​​well​​as​​the​​main​​conclusions.​​It​​mentions​​my​​skills​​and​​knowledge,​​challenges​​I​
​faced​ ​and​ ​how​ ​I​ ​dealt​ ​with​ ​them.​ ​Additionally,​ ​the​ ​section​ ​talks​ ​about​ ​what​ ​the​ ​future​
​holds in terms of career development after such an opportunity.​

​5​

​Chapter 2: Background Study and Literature Review​

​2.1. Introduction to Organization​

​Smart​​Ideas​​Pvt.​​Ltd.​​,​​popularly​​known​​as​​HamroPatro​​,​​is​​a​​leading​​software​​company​
​based​ ​in​ ​Kathmandu,​ ​Nepal.​ ​Smart​ ​Ideas​ ​Pvt.Ltd​ ​is​ ​a​ ​pioneering​ ​Nepali​ ​technology​
​company​ ​recognized​ ​as​ ​the​ ​country’s​ ​leading​ ​digital​ ​super-app.​ ​Established​ ​in​ ​2010​ ​by​
​Shankar​ ​Uprety,​ ​Hamro​ ​Patro​ ​started​ ​as​ ​a​ ​personal​ ​initiative​ ​to​ ​digitize​ ​the​ ​traditional​
​Nepali​ ​calendar​ ​for​ ​mobile​ ​platforms.​ ​Since​ ​then,​ ​the​ ​company​ ​has​ ​evolved​ ​into​ ​a​
​comprehensive​​digital​​ecosystem,​​offering​​a​​diverse​​range​​of​​services​​aimed​​at​​enriching​
​the lives of Nepalis both at home and abroad.​

​The​ ​platform’s​ ​offerings​ ​include​ ​a​ ​Nepali​ ​calendar,​ ​news​ ​aggregation,​ ​forex​ ​and​ ​gold​
​rates,​ ​horoscopes,​ ​Nepali​ ​FM​ ​radio,​ ​podcasts,​ ​health​ ​consultations,​ ​event​ ​ticketing,​
​educational​ ​resources,​ ​and​ ​digital​ ​remittance​ ​services.​ ​In​ ​recent​​years,​​Hamro​​Patro​​has​
​expanded​​into​​fintech​​by​​launching​​Hamro​​Pay​​,​​a​​digital​​wallet,​​further​​strengthening​​its​
​role in digital inclusion and financial connectivity.​

​As​ ​of​​2025,​​Hamro​​Patro​​has​​achieved​​over​​10​​million​​plus​​app​​downloads​​and​​serves​
​more​​than​​15​​million​​monthly​​active​​users​​,​​making​​it​​the​​most​​widely​​used​​Nepali​​app​
​globally.​ ​The​ ​app​ ​plays​ ​a​ ​significant​ ​role​ ​in​ ​helping​​the​​Nepali​​diaspora​​stay​​connected​
​with​​their​​culture​​and​​community,​​while​​also​​serving​​as​​an​​indispensable​​digital​​utility​​for​
​users​ ​within​ ​Nepal.​ ​Hamro​ ​Patro​ ​Remit​ ​has​ ​been​ ​especially​ ​impactful​ ​for​ ​international​
​money transfers, primarily catering to Nepali migrant workers.​

​Hamro​ ​Patro​ ​continues​ ​to​ ​lead​ ​Nepal’s​ ​digital​ ​transformation​ ​by​ ​providing​ ​trusted,​
​locally-tailored​ ​services​ ​through​ ​a​ ​single​ ​unified​ ​platform.​ ​Its​ ​success​ ​is​ ​driven​ ​by​ ​a​
​dedicated​ ​team​ ​of​ ​technologists,​ ​designers,​ ​and​​domain​​experts​​committed​​to​​building​​a​
​secure, inclusive, and dynamic digital ecosystem.​

​Table 2.1 : Company Details​

​Year of establishment​ ​2010​

​Key Service areas​ ​Nepali calendar, News, Horoscope, Finance,​

​Radio, Podcasts, E‑learning, Remittance,​

​Telehealth, Digital Wallet, Messaging.​

​6​

​Staff Size​ ​60-120 employees​

​Location of clients​ ​Sifal,Kathmandu​

​Expertise in​ ​Multi service mobile platform, calendar,​

​remit, health, fintech, content delivery​

​Noteworthy mentions​ ​First nepali calendar app on ios, 10 million+​

​downloads​

​2.2. Organizational Hierarchy​

​Smart​ ​Ideas​ ​promotes​ ​innovation​ ​and​ ​agility​ ​through​ ​a​ ​lean​ ​and​ ​cross-functional​
​organizational​ ​structure.​ ​The​ ​Board​ ​of​ ​Directors​ ​provides​ ​strategic​ ​direction,​ ​while​ ​the​
​Executive​ ​Management​ ​team​ ​is​ ​responsible​ ​for​ ​translating​ ​this​ ​vision​ ​into​ ​actionable​
​goals.​ ​The​ ​organization​ ​is​ ​structured​ ​into​ ​specialized​ ​departments,​ ​each​ ​contributing​ ​to​
​the platform's growth and user experience.​

​7​

​Figure 2.1 : Organizational Hierarchy​

​2.3. Working Domains of Organization​

​The company primarily operates in the following domains:​

​1.​ ​Cultural and Calendar Services​​:​
​Smart​​Ideas​​is​​best​​known​​for​​its​​Nepali​​calendar​​,​​which​​remains​​the​​core​​feature​
​of​​the​​platform.​​It​​provides​​festival​​updates,​​tithis,​​rashifal,​​Panchang​​details,​​and​
​both Bikram Sambat (B.S.) and Gregorian calendar conversion.​

​2.​ ​News and Information Aggregation​​:​
​The​​platform​​aggregates​​content​​from​​over​​80​​national​​and​​regional​​news​​portals,​
​making​ ​it​ ​a​ ​go-to​ ​source​ ​for​ ​news​ ​consumption.​ ​Users​ ​can​ ​access​ ​real-time​
​updates​ ​on​ ​national​ ​affairs,​ ​politics,​ ​finance,​ ​sports,​ ​and​ ​entertainment​ ​from​ ​a​
​centralized interface.​

​3.​ ​Media and Entertainment​​:​
​Smart​ ​Ideas​ ​features​ ​Nepali​ ​FM​ ​radio​ ​stations​​,​ ​allowing​ ​users​​to​​stream​​local​
​radio​ ​from​ ​anywhere.​ ​It​ ​also​ ​hosts​ ​a​ ​wide​ ​collection​ ​of​ ​podcasts​​,​ ​along​ ​with​
​features like ecards, music streaming, and video content.​

​4.​ ​Fintech and Digital Payments​​:​
​Smart​ ​Ideas​ ​has​ ​introduced​ ​Hamro​ ​Pay​​,​ ​a​ ​digital​ ​wallet​ ​that​ ​supports​ ​mobile​
​recharges, utility bill payments, merchant QR payments (NepalPay), and more.​
​Additionally,​ ​Hamro​ ​Patro​ ​Remit​ ​enables​ ​fast​ ​and​ ​affordable​ ​international​
​money​​transfer​​services,​​particularly​​aimed​​at​​the​​large​​Nepali​​diaspora​​working​
​abroad.​

​5.​ ​Health and Teleconsultation​​:​
​The​ ​app​ ​integrates​ ​telehealth​ ​services​​,​ ​allowing​ ​users​ ​to​ ​schedule​ ​virtual​
​consultations​ ​with​​licensed​​doctors,​​access​​medical​​content,​​and​​receive​​wellness​
​advice.​

​6.​ ​Education and E-Learning​​:​
​Hamro​​Patro​​also​​offers​​learning​​resources​​such​​as​​academic​​materials,​​language​
​tools,​ ​and​ ​exam​ ​preparation​ ​content.​ ​The​ ​app​ ​includes​ ​dictionary​ ​tools​​,​ ​Nepali​
​typing​ ​keyboards,​ ​and​ ​multilingual​ ​support​ ​to​ ​enhance​ ​learning​ ​and​
​communication.​

​7.​ ​Astrology & Jyotish Consultations:​
​Hamro​ ​Jyotish​ ​connects​ ​users​ ​with​ ​certified​ ​Vedic​ ​astrologers​ ​(Jyotish)​ ​via​ ​live​
​audio/video consultations and personalized remedies.​

​8​

​8.​ ​Marketplace​​:​
​Through​ ​Hamro​ ​Mart​​,​ ​users​ ​can​ ​experience​ ​ecommerce​ ​services​ ​and​ ​buy​
​different goods online.​

​2.4. Description of Intern Department​

​During​ ​my​ ​internship​ ​at​ ​Smart​ ​Ideas​ ​Pvt.Ltd​ ​(Hamro​ ​Patro).,​ ​I​ ​was​ ​placed​ ​in​ ​the​
​Engineering​​Department,​​which​​plays​​a​​crucial​​role​​in​​the​​company’s​​IT​​infrastructure​
​and​​operations.​​The​​DevOps​​team​​is​​responsible​​for​​ensuring​​seamless​​integration​​and​
​deployment​ ​processes,​ ​enabling​ ​continuous​ ​integration​ ​and​ ​continuous​ ​delivery​
​(CI/CD)​ ​of​ ​applications.​ ​This​ ​involves​ ​managing​ ​infrastructure​ ​automation,​
​monitoring​ ​system​ ​performance,​ ​and​ ​enhancing​ ​deployment​ ​efficiency​ ​through​
​streamlined​ ​processes​ ​and​ ​tools.​ ​Each​ ​team​ ​within​ ​the​ ​department​ ​is​ ​led​ ​by​ ​a​
​dedicated​ ​manager​ ​who​ ​oversees​ ​operations​ ​and​ ​delegates​ ​responsibilities​ ​to​ ​team​
​members.​​Under​​the​​guidance​​of​​the​​Engineering​​Department,​​the​​department​​fosters​
​a​​collaborative​​and​​energetic​​environment​​that​​enables​​its​​teams​​to​​deliver​​exceptional​
​results.​

​As​​a​​DevOps​​intern,​​I​​had​​the​​opportunity​​to​​work​​under​​the​​guidance​​of​​my​​mentors,​

​Shital​ ​Kumar​ ​Nyaupane​ ​and​ ​Saurab​ ​Tharu​ ​who​ ​provided​ ​invaluable​ ​assistance​

​throughout​ ​my​ ​tenure.​ ​My​ ​responsibilities​ ​included​ ​assisting​ ​in​ ​the​ ​setup​ ​and​

​maintenance​ ​of​ ​scylla,​ ​postgres​ ​database​ ​clusters,working​ ​with​ ​tools​ ​like​ ​Docker,​

​Kubernetes,​ ​and​ ​Helms,​ ​Envoy​ ​,​ ​Prometheus​ ​,​ ​Grafana,​ ​ELK​ ​for​ ​infrastructure​

​automation,​ ​and​ ​implementing​ ​monitoring​ ​tools​ ​to​ ​track​ ​system​ ​performance.​

​Additionally,​​I​​wrote​​scripts​​to​​automate​​routine​​tasks,​​improving​​overall​​efficiency​​in​

​deployment​ ​and​ ​maintenance​ ​processes.​ ​This​ ​hands​on​ ​experience​ ​in​ ​DevOps​

​practices,​ ​coupled​ ​with​ ​the​ ​support​ ​and​ ​mentorship​ ​from​ ​my​ ​team,​ ​significantly​

​enhanced​​my​​technical​​skills​​and​​prepared​​me​​for​​a​​future​​career​​in​​the​​DevOps​​field.​

​The​ ​collaborative​ ​and​ ​energetic​ ​environment​ ​at​ ​HamroPatro​ ​allowed​ ​me​ ​to​​develop​

​professionally and contribute effectively to the team’s objectives.​

​2.5. Literature Review​

​The​ ​adoption​ ​of​ ​DevOps​ ​practices​ ​has​ ​significantly​ ​transformed​ ​the​ ​software​
​development​ ​and​ ​IT​ ​operations​ ​landscape,​ ​promoting​ ​a​ ​culture​ ​of​ ​collaboration,​
​continuous​​integration,​​and​​automation​​(Ebert​​et​​al.,​​2016).​​DevOps​​culture​​thrives​​on​
​the​​breaking​​down​​of​​walls​​between​​development​​and​​operations​​teams​​thus​​enabling​
​faster​​and​​more​​reliable​​software​​releases​​(Bass,​​2015).​​This​​kind​​of​​transformation​​is​
​supported​ ​by​ ​a​ ​shift​ ​towards​​this​​culture​​which​​is​​fostered​​by​​processes​​and​​tools​​of​

​9​

​automation​ ​where​ ​quality​ ​can​ ​be​ ​delivered​ ​at​ ​speed​ ​without​ ​sacrificing​ ​stability​ ​of​
​operations or efficiency in running such systems within an organization.​

​Continuous​ ​Integration/Continuous​ ​Deployment​ ​(CI/CD)​ ​is​ ​one​ ​such​ ​central​ ​pillar​
​among​ ​other​ ​things​ ​that​ ​make​ ​up​ ​DevOps​​(Farley,​​2015).​​CI/CD​​pipelines​​automate​
​integration​ ​testing​ ​deployment,​ ​speeding​ ​up​ ​production​ ​cycles​ ​through​ ​reduction​ ​of​
​manual​ ​labour​ ​errors​ ​and​ ​general​ ​slowness​ ​associated​ ​with​ ​them​ ​thus​ ​ultimately​
​boosting​​overall​​productivity​​levels​​within​​development​​teams.​​Also,​​it​​sets​​a​​ground​
​for​ ​receiving​ ​quick​ ​responses​ ​from​ ​clients​ ​during​ ​different​ ​stages​ ​(feedback​ ​loops)​
​because​ ​developers​ ​can​ ​detect​ ​any​ ​problem​ ​at​ ​an​ ​early​ ​stage​ ​before​ ​proceeding​
​further.​

​Additionally,​​if​​DevOps​​practices​​are​​adopted​​in​​organization​​then​​system​​monitoring​
​and​ ​incident​ ​management​ ​become​ ​easier​ ​than​ ​ever​ ​before.​ ​There​ ​are​ ​continuous​
​monitoring​​tools​​such​​as​​Prometheus,​​Grafana​​or​​ELK​​stack​​(Elasticsearch,​​Logstash,​
​Kibana)​​among​​others​​which​​offer​​visibility​​into​​the​​performance​​and​​health​​status​​of​
​a​ ​system​ ​real​ ​time​ ​(​​Ebert​ ​et​ ​al.,​ ​2016).​ ​Through​ ​them​ ​organizations​ ​can​ ​easily​ ​find​
​anomalies​ ​proactively​ ​as​ ​well​ ​as​ ​respond​ ​quickly​ ​when​ ​incidents​ ​occur​ ​so​ ​as​ ​to​
​improve​ ​reliability​ ​while​ ​reducing​ ​downtime​ ​for​ ​those​ ​depending​ ​on​ ​these​ ​systems​
​most​ ​times​ ​in​ ​businesses​ ​world​ ​wide.​ ​More​ ​still,​ ​an​ ​effective​ ​monitoring​ ​combined​
​with​ ​logging​ ​forms​ ​strong​ ​pillars​ ​towards​ ​achieving​ ​success​ ​through​ ​ensuring​ ​high​
​availability​ ​levels​ ​&​ ​performances​ ​are​ ​maintained​ ​always​ ​within​ ​any​ ​given​
​environment​ ​setting​ ​under​ ​consideration​ ​taking​ ​cognizance​ ​that​ ​downtime​ ​may​
​translate​​into​​huge​​losses​​especially​​financially​​or​​even​​worse​​loss​​of​​lives​​due​​failure​
​deliver mission critical services.​

​10​

​Chapter 3: Internship Activities​

​3.1. Roles and Responsibilities​
​While​ ​working​ ​as​ ​a​ ​DevOps​ ​Engineer​ ​intern​ ​for​ ​Smart​ ​Ideas​ ​,​ ​my​ ​main​ ​focus​ ​was​ ​on​
​bringing together software development and IT operations. I had the following tasks:​

​i) CD Pipeline Implementation:​
​Automating​ ​software​ ​build,​ ​test,​ ​and​ ​deployment​ ​processes​ ​by​ ​setting​ ​up​ ​Flux​ ​CD​
​pipelines.​

​ii) Infrastructure Management:​
​Designing infrastructure solutions that could be scaled using physical servers.​

​iii) Monitoring and Logging:​
​Ensuring​ ​system​ ​reliability​ ​and​ ​performance,​ ​setting​ ​up​ ​the​ ​monitoring​ ​tools​ ​such​ ​as​
​Grafana, Prometheus, Uptime Kuma as well as setting up alerting systems.​

​iv) Containerization​​:​
​Setting​​up​​Kubernetes​​(RKE2)​​for​​managing​​Docker​​containers​​which​​were​​orchestrated​
​using Rancher.​

​v) Documentation & Reporting:​
​Preparing​ ​documentation​ ​of​ ​every​ ​procedure​ ​undertaken​​along​​with​​their​​configurations​
​before finally compiling performance reports at the end of each month.​

​vi) Collaboration:​
​Working​ ​hand​ ​in​ ​hand​ ​with​ ​developers​ ​and​ ​other​ ​team​ ​players​ ​so​ ​as​ ​to​ ​smoothen​
​integration points between development and deployment workflows​

​vii) Continuous learning:​
​Staying​ ​updated​ ​with​ ​industry​ ​trends​ ​and​ ​applying​ ​new​ ​knowledge​ ​to​ ​improve​​existing​
​systems.​

​viii) Deployment to k8s cluster:​

​Deploying three tier applications to kubernetes cluster following best practices.​

​3.2. Weekly log​

​The​ ​following​ ​table​ ​shows​ ​the​ ​weekly​ ​activities​ ​the​ ​intern​ ​performed​ ​throughout​ ​their​

​internship period.​

​Table 3.1: Weekly log​

​11​

​Week​ ​Activities​

​Week 1​
​●​ ​Onboarding session.​

​●​ ​Into to proxmox virtualization​

​●​ ​Getting used to and more familiar with linux commands.​

​●​ ​Understanding and learning of networking commands​

​●​ ​Learned about linux container and linux container daemons​

​●​ ​Containerization​ ​and​ ​deployment​ ​of​ ​simple​ ​java​ ​micronaut​

​applications in a container runtime environment.​

​Week 2​ ​●​ ​Proxmox setup in laptop​

​●​ ​Learned about server hardening best practices​

​●​ ​Learned about setting up a bastion host.​

​●​ ​Introduction to kafka and Distributed systems.​

​Week 3​ ​●​ ​Explored wine to run windows application in linux VM.​

​●​ ​Explored​ ​and​ ​setup​ ​Envoy​ ​Gateway​ ​and​​Contour​​ingress​​controller​​to​​route​

​traffic in kubernetes cluster​

​●​ ​Learned about load balancing and setup metallb in bare metal systems.​

​●​ ​Configured nginx hosted website with SSL certificate​

​Week 4​ ​●​ ​Explored​ ​and​ ​used​ ​customization​ ​for​ ​configuration​ ​management​ ​in​ ​k8s​

​cluster.​

​●​ ​Setup​ ​Flux​ ​CD​ ​for​ ​continuous​ ​delivery​ ​of​ ​applications​ ​into​ ​the​ ​kubernetes​

​cluster.​

​●​ ​Explored all the controllers of Flux CD.​

​●​ ​Compared Flux CD and Argo CD for continuous deployment.​

​Week 5​ ​●​ ​Learned​ ​about​ ​image​ ​automation​​controllers​​to​​automatically​​update​​images​

​in deployment by fetching from container registry like docker hub.​

​●​ ​Learned about setting monitoring with Flux CD​

​●​ ​Learned and set up NATS in the kubernetes cluster with Helm Charts.​

​●​ ​Setuped RKE2 Kubernetes cluster​

​●​ ​Containerized and deployed java spring boot app to docker containers.​

​12​

​Week 6​ ​●​ ​Introduction to scylladb and local setup.​

​●​ ​Setup​ ​scylladb​​cluster​​with​​2​​master​​and​​2​​workers​​nodes​​in​​vmware​​virtual​

​machines.​

​●​ ​Introduction​​to​​Ipsec​​and​​setting​​up​​site​​to​​site​​vpn​​between​​data​​centers​​with​

​libreswan.​

​●​ ​Learn and understand about ipsec.​

​Week 7​ ​●​ ​Deployed sidecar container in RKE2​

​●​ ​Explored Iptables and UFW firewall.​

​●​ ​Learned about K8s common Errors and troubleshooting process​

​●​ ​Learned about awk and sed command​

​●​ ​Created VM Template for future use.​

​Week 8​ ​●​ ​Deployed​ ​pods​ ​in​ ​RKE2​ ​cluster​ ​and​ ​checked​ ​where​ ​pod​ ​schedule​ ​to​ ​new​

​node on failure or not​

​●​ ​Explored Hamro Patro Development environment repo structure flow.​

​●​ ​Learned about how Gateway VM is created.​

​●​ ​Explored influxdb for log collection.​

​●​ ​Added​ ​Metrix​ ​server​ ​in​ ​proxmox​ ​to​ ​collect​ ​old​ ​dallas​ ​data​ ​center​ ​logs​ ​into​

​influxdb.​

​Week 9​ ​●​ ​Setup Ipsec from old dallas data center to lax data center.​

​●​ ​Explored scylladb multi data center cluster.​

​●​ ​Explored the API Gateway in Kubernetes.​

​●​ ​Setup Envoy Gateway , Http Route to route the external traffic to k8s pods.​

​●​ ​Deployed Yelcamp a three tier app to EKS cluster.​

​Week 10​ ​●​ ​Setup postgres database cluster in vm.​

​●​ ​Explored and Setup Reloader in kubernetes.​

​●​ ​Explored about kubens and kubectx tools for kubernetes.​

​●​ ​Explored​​monitoring​​of​​kubernetes​​cluster​​with​​octant,​​kubernetes​​dashboard,​

​lens.​

​Week 11​ ​●​ ​Implemented service level load balancing in envoy gateway.​

​●​ ​Explored envoy circuit breaker, client traffic policy in envoy gateway.​

​●​ ​Explored about proxmox vm backup in s3 bucket.​

​●​ ​Setup vm backup in digital ocean s3 bucket.​

​●​ ​Explored Hamro Patro Repo Structure.​

​13​

​Week 12​ ​●​ ​Setup monitoring in RKE2 K8s cluster.​

​●​ ​Explored EBPF and its use cases.​

​●​ ​Setup​ ​ELK​ ​stack​ ​for​ ​monitoring​ ​log​ ​and​ ​visualizing​ ​them​ ​using​ ​Kibana​ ​in​

​local system​

​●​ ​Devopsified​ ​and​ ​deployed​ ​java​ ​micronaut​ ​application​ ​to​ ​k3s​ ​kubernetes​

​cluster.​

​3.3. Description of the Projects Involved During Internship​

​During​​my​​internship,​​I​​was​​involved​​in​​several​​tasks​​ranging​​from​​minor​​configurations​

​to​ ​major​ ​deployments.​ ​Among​ ​these,​ ​three​ ​major​ ​projects​ ​stood​ ​out,​ ​both​ ​leveraging​

​local​ ​infrastructure​ ​and​ ​DevOps​ ​practices.​ ​Here​ ​are​ ​the​ ​some​ ​of​ ​the​ ​minor​ ​to​ ​major​

​learnings and tasks i have performed:​

​Project​ ​1:​ ​Containerized​ ​and​ ​deployed​ ​java​ ​spring​ ​boot​ ​application​ ​into​ ​docker​

​containers.​

​In​ ​this​ ​project​ ​I​ ​focused​ ​on​​containerizing​​a​​full-stack​​Java​​Spring​​Boot​​application​​and​

​deploying​ ​it​ ​with​ ​Docker​ ​Compose​ ​in​ ​a​ ​cloud​ ​vm​ ​environment.​ ​It​ ​provided​​a​​hands-on​

​understanding​​of​​containerization,​​environment​​management,​​and​​service​​orchestration​​all​

​core concepts in modern DevOps practices.​

​i) Application Packaging with Multi-Stage Dockerfile​

​The​ ​application​ ​was​ ​built​ ​using​ ​a​ ​multi-stage​ ​Dockerfile​ ​to​ ​optimize​ ​image​ ​size​ ​and​

​efficiency:​

​●​ ​In​ ​the​ ​first​ ​stage,​ ​a​ ​Maven​ ​image​ ​was​ ​used​ ​to​ ​compile​ ​and​ ​package​ ​the​ ​Spring​

​Boot application (task-manager) into a runnable JAR file.​

​●​ ​The​​second​​stage​​used​​a​​lightweight​​OpenJDK​​runtime​​image​​(eclipse-temurin)​​to​

​run​​the​​packaged​​application,​​reducing​​the​​final​​image​​size​​and​​improving​​startup​

​speed.​

​Dockerfile:​

​# Stage 1: Build the application​

​FROM maven:3.9.6-eclipse-temurin-17-alpine AS build​

​WORKDIR /app​

​# Copy the Maven project files​

​14​

​COPY pom.xml .​

​COPY src ./src​

​# Package the application​

​RUN mvn clean package -DskipTests​

​# Stage 2: Run the application​

​FROM eclipse-temurin:17-jre-alpine​

​WORKDIR /app​

​# Copy the built jar from the previous stage​

​COPY --from=build /app/target/task-manager-0.0.1-SNAPSHOT.jar app.jar​

​EXPOSE 8080​

​ii) Service Composition with Docker Compose​

​The​ ​entire​ ​application​ ​stack​ ​was​ ​defined​ ​and​ ​orchestrated​ ​using​ ​docker-compose.yml,​

​enabling seamless local deployment:​

​●​ ​A​ ​PostgreSQL​ ​15​ ​container​ ​served​ ​as​ ​the​ ​backend​ ​database,​ ​with​ ​persistent​

​storage through Docker volumes.​

​●​ ​The​​Spring​​Boot​​container​​ran​​the​​main​​application,​​exposing​​it​​on​​port​​8080,​​and​

​was configured to connect to the PostgreSQL service using environment variables.​

​Docker Compose:​

​version: '3.8'​

​services:​

​postgres:​

​image: postgres:15​

​container_name: pgdb​

​restart: always​

​environment:​

​POSTGRES_DB: taskmanager​

​POSTGRES_USER: taskapp​

​POSTGRES_PASSWORD: securepassword​

​ports:​

​- "5433:5432"​

​volumes:​

​- pgdata:/var/lib/postgresql/data​

​taskmanager:​

​15​

​build: .​

​ports:​

​- "8080:8080"​

​environment:​

​SPRING_DATASOURCE_URL: jdbc:postgresql://postgres:5432/taskmanager​

​SPRING_DATASOURCE_USERNAME: taskapp​

​SPRING_DATASOURCE_PASSWORD: securepassword​

​depends_on:​

​- postgres​

​volumes:​

​pgdata:​

​Figure​ ​3.1​ ​:​ ​Architecture​ ​Diagram​ ​of​ ​Project​ ​on​ ​Containerized​ ​and​ ​deployed​ ​java​

​spring boot application into docker containers.​

​16​

​Figure 3.2: Docker compose up Steps​

​Figure 3.3: Verifying the Running Containers​

​17​

​Figure 3.4: Accessing the deployed spring boot app from public ip.​

​Figure 3.5: Verifying the data stored in postgresql db container​

​Project​ ​2:End-to-End​ ​CI/CD​ ​Deployment​ ​of​ ​YelpCamp​ ​on​ ​AWS​ ​using​ ​Docker​ ​&​

​Kubernetes​

​18​

​This​ ​project​ ​was​ ​about​ ​designing​​and​​implementing​​a​​complete​​DevOps​​workflow​​for​​a​

​full-stack​ ​web​ ​application​ ​called​ ​YelpCamp.​ ​It​ ​involved​ ​transitioning​ ​from​ ​manual​

​deployments​ ​to​ ​automated,​ ​containerized,​​and​​scalable​​deployment​​pipelines,​​leveraging​

​modern DevOps tools and best practices.​

​i) Initial Manual Deployment​

​The project began with manual deployment on AWS EC2 instances, where:​

​●​ ​The Node.js backend was manually configured on a virtual machine.​

​●​ ​MongoDB Atlas was used as a cloud-hosted NoSQL database.​

​●​ ​The​​environment​​provided​​a​​baseline​​understanding​​of​​infrastructure​​provisioning​

​and manual service setup.​

​ii) Containerized CI/CD Workflow​

​To​ ​streamline​ ​development​ ​and​ ​deployment,​ ​the​ ​application​ ​was​ ​containerized​ ​using​

​Docker and integrated into a CI/CD pipeline using Jenkins:​

​●​ ​Jenkins Pipelines were configured to trigger on code changes, automating:​

​○​ ​Unit Testing​

​○​ ​Code Quality Checks using SonarQube​

​○​ ​Security Scans using Trivy​

​●​ ​Docker images were built and pushed to DockerHub.​

​●​ ​A​ ​development​ ​environment​ ​on​ ​EC2​ ​consumed​ ​these​ ​images​ ​for​ ​continuous​

​integration and testing.​

​iii) Production Deployment on AWS EKS​

​The​​final​​stage​​of​​the​​project​​involved​​a​​fully​​automated​​production​​deployment​​on​​AWS​

​EKS:​

​●​ ​The​ ​Dockerized​ ​application​ ​was​ ​orchestrated​ ​using​ ​Kubernetes,​ ​ensuring​

​scalability, high availability, and fault tolerance.​

​●​ ​Kubernetes manifests define the desired state of application components.​

​●​ ​Security​ ​best​ ​practices​ ​were​ ​followed​ ​using​ ​RBAC,​ ​service​ ​accounts,​ ​and​

​namespace isolation.​

​●​ ​External​ ​services​ ​such​ ​as​ ​Mapbox​ ​(for​ ​geolocation)​ ​and​ ​Cloudinary​ ​(for​ ​image​

​hosting) were securely integrated.​

​Manifests:​

​19​

​20​

​21​

​Figure​ ​3.6​ ​:​ ​Architecture​​Diagram​​of​​Project​​on​​End-to-End​​CI/CD​​Deployment​​of​

​YelpCamp on AWS using Docker & Kubernetes​

​22​

​Figure 3.7 : CICD Pipeline for the application in Jenkins​

​Figure 3.8 : Final Deployed web application​

​Project​​3:​​Devopsified​​and​​Deployment​​of​​Java​​Micronaut​​Web​​Application​​into​​k3s​

​kubernetes​ ​cluster​ ​with​ ​custom​ ​domain​ ​,​ ​ssl​ ​certificates​ ​and​ ​monitoring​ ​with​

​prometheus, grafana, newrelic.​

​In​ ​this​ ​project,​ ​I​ ​focused​ ​on​ ​complete​ ​DevOps​ ​implementation​ ​of​ ​a​ ​three-tier​ ​web​

​application​ ​built​ ​using​ ​Micronaut,​ ​React,​ ​and​ ​ScyllaDB.​ ​The​ ​application​ ​was​

​containerized,​​deployed​​in​​a​​self-hosted​​lightweight​​K3s​​Kubernetes​​cluster,​​and​​exposed​

​securely over a custom domain with Let's Encrypt SSL certificates and Traefik Ingress.​

​23​

​i) Containerization and Image Management​

​The frontend (React) and backend (Micronaut) components were:​

​●​ ​Dockerized​​separately with production-ready Dockerfiles.​

​●​ ​Pushed to Docker Hub​​for use in Kubernetes deployment.​

​This enabled version-controlled, reproducible deployments across environments.​

​ii) Kubernetes Deployment on K3s​

​A​​K3s cluster​​was manually provisioned and configured​​to run the application:​

​●​ ​Kubernetes​​manifests​​were written for deployments,​​services, and ingress rules.​

​●​ ​Each​ ​tier​ ​(frontend,​ ​backend,​ ​database)​ ​was​ ​independently​ ​deployed​ ​in​ ​its​ ​own​

​pod.​

​●​ ​The​ ​backend​ ​services​ ​connected​ ​to​ ​a​ ​ScyllaDB​ ​cluster​ ​set​ ​up​ ​on​ ​two​ ​virtual​

​machines.​

​iii) Ingress & Domain Setup with Traefik and SSL​

​Traefik​​was used as the Kubernetes ingress controller​​to handle traffic routing:​

​●​ ​Ingress resources​​were defined with custom routing​​rules for / and /api paths.​

​●​ ​The​ ​domain​ ​notes.ksaurav.com.np​ ​was​ ​mapped​ ​to​ ​the​ ​Traefik​ ​LoadBalancer​

​External IP.​

​●​ ​Use Cloud Flare as a DNS Manager.​

​●​ ​Let’s​ ​Encrypt​ ​certificates​ ​were​ ​issued​ ​automatically​ ​using​ ​cert-manager​ ​and​ ​a​

​configured ClusterIssuer.​

​24​

​Figure​ ​3.9​ ​:​ ​Architecture​ ​Diagram​ ​of​ ​Deployment​ ​of​ ​Java​ ​Micronaut​ ​Web​

​Application​ ​into​ ​k3s​ ​kubernetes​ ​cluster​ ​with​ ​custom​ ​domain​ ​,​ ​ssl​ ​certificates​ ​and​

​monitoring with prometheus, grafana, newrelic.​

​Figure 3.10 : Kubernetes manifest structure of the project​

​Figure 3.11 : Details of the nodes and running resources in k8s cluster​

​25​

​Figure 3.12 : Final Deployed Three Tier notes maker app with SSL certificates and​

​Custom Domain.​

​26​

​Figure 3.13 : Grafana Dashboard for application metrics monitoring​

​Figure 3.14 : Lens Dashboard for Cluster Management​

​27​

​Figure 3.15 : New Relic Dashboard for K8s cluster and resource monitoring​

​3.4. Description of the Tools Used​
​During​ ​the​ ​internship,​ ​I​ ​worked​ ​extensively​ ​with​​a​​variety​​of​​DevOps,​​containerization,​

​cloud-native,​ ​and​ ​infrastructure​ ​tools.​ ​These​ ​tools​ ​were​ ​instrumental​ ​in​ ​enabling​

​automation,​ ​scalability,​ ​monitoring,​ ​secure​ ​deployments,​ ​and​​production-level​​reliability​

​for the projects I was involved in.​

​1. Docker & Docker Compose​

​Docker​ ​was​ ​used​ ​extensively​ ​for​ ​containerizing​ ​applications,​ ​managing​ ​dependencies,​

​and​ ​creating​ ​reproducible​ ​environments.​ ​Docker​ ​Compose​ ​simplified​ ​multi-container​

​orchestration by defining services, volumes, and networking in a single YAML file.​

​Key Use Cases:​

​●​ ​Containerization of Java Spring Boot, Micronaut, and React applications.​

​●​ ​Orchestration of multi-tier applications with databases like PostgreSQL.​

​●​ ​Streamlining development-to-deployment lifecycle.​

​2. Kubernetes (RKE2, K3s, EKS)​

​28​

​Kubernetes​ ​served​ ​as​ ​the​ ​primary​ ​orchestration​ ​platform​ ​for​ ​managing​ ​containerized​

​applications.​ ​Both​ ​lightweight​ ​(K3s)​ ​and​ ​production-grade​ ​(RKE2,​ ​EKS)​ ​clusters​ ​were​

​used.​

​Key Use Cases:​

​●​ ​Deployment of applications like YelpCamp and Notes Maker.​

​●​ ​Setup of monitoring, ingress (Traefik, Envoy Gateway), and service routing.​

​●​ ​Handling scalability, fault tolerance, and zero-downtime deployments.​

​3.​​Jenkins​

​Jenkins​ ​was​ ​used​ ​to​ ​implement​ ​a​ ​CI/CD​ ​pipeline,​ ​automating​ ​build,​ ​test,​ ​scan,​ ​and​

​deployment workflows for containerized applications.​

​Key Use Cases:​

​●​ ​Triggering CI/CD workflows on code changes.​

​●​ ​Integrating tools like SonarQube (code quality) and Trivy (security scanning).​

​●​ ​Deploying Docker images to environments via Kubernetes manifests.​

​4. HashiCorp Vault​

​Vault​​was​​deployed​​inside​​a​​Kubernetes​​cluster​​to​​securely​​manage​​and​​inject​​secrets​​into​

​pods using Vault Agent Sidecar Injector and Kubernetes Auth method.​

​Key Use Cases:​

​●​ ​Dynamic secrets management for applications.​

​●​ ​Secure injection of credentials into pods via annotations.​

​●​ ​Integration with Kubernetes Service Accounts and Roles.​

​5. Helm​

​Helm​ ​acted​ ​as​ ​the​ ​package​ ​manager​ ​for​ ​Kubernetes,​ ​simplifying​ ​the​ ​deployment​ ​of​

​complex applications like Vault, Envoy Gateway, NATS, and more using reusable charts.​

​Key Use Cases:​

​●​ ​Installing third-party services with custom values (e.g., vault-values.yaml).​

​●​ ​Managing version-controlled, declarative deployments.​

​6. Traefik Ingress Controller & Envoy Gateway​

​29​

​Both​ ​Traefik​ ​and​ ​Envoy​ ​Gateway​ ​were​ ​explored​ ​and​ ​deployed​ ​as​​ingress​​controllers​​to​

​expose applications externally with custom domains and routing rules.​

​Key Use Cases:​

​●​ ​Custom domain setup with SSL using Let’s Encrypt via cert-manager.​

​●​ ​HTTP routing to internal services with annotations and HTTPRoute.​

​●​ ​Secure TLS termination and middleware configurations (e.g., HTTPS redirect).​

​7.​​ScyllaDB​

​ScyllaDB,​ ​a​ ​high-performance​ ​NoSQL​ ​database,​ ​was​ ​set​ ​up​ ​as​ ​a​ ​multi-node​​cluster​​for​

​backend services needing high throughput and low latency.​

​Key Use Cases:​

​●​ ​Clustered database setup across VMs for high availability.​

​●​ ​Use of CQL for querying and testing replication.​

​●​ ​Backend storage for notes maker app.​

​8. MinIO​

​MinIO​ ​was​ ​deployed​ ​locally​ ​to​ ​simulate​ ​S3-compatible​ ​object​ ​storage​ ​with​ ​replication​

​and policy-based access control.​

​Key Use Cases:​

​●​ ​Object storage for application backups, logs, and assets.​

​●​ ​Automated file upload and replication via Python SDK.​

​●​ ​Policy and bucket-level access configuration for secure storage.​

​9. Monitoring Tools (Prometheus, Grafana, New Relic, Octant, Lens)​

​A​ ​robust​ ​monitoring​ ​stack​ ​was​ ​set​ ​up​ ​to​ ​collect​ ​metrics,​ ​visualize​ ​system​ ​health,​ ​and​

​debug deployments.​

​Key Use Cases:​

​●​ ​Prometheus for scraping application metrics​

​●​ ​Grafana and New Relic for visualizing cluster and app-level performance.​

​●​ ​Lens, Octant, and Kubernetes Dashboard for real-time cluster insights.​

​10. Flux CD​

​30​

​Flux​ ​CD​ ​was​ ​used​ ​for​ ​GitOps-based​ ​continuous​ ​delivery​ ​in​ ​the​ ​Kubernetes​ ​cluster,​

​allowing automatic application updates from version-controlled Git repositories.​

​Key Use Cases:​

​●​ ​Declarative deployment management with Git as the source of truth.​

​●​ ​Image update automation using Image Automation Controllers.​

​●​ ​Policy-based delivery and rollback.​

​11. NATS & Kafka​

​Both​ ​NATS​ ​and​ ​Kafka​ ​were​ ​explored​ ​for​ ​real-time​ ​messaging​ ​and​ ​distributed​

​communication.​

​●​ ​Deployment via Helm in Kubernetes.​

​●​ ​Introduction to publisher-subscriber architecture.​

​●​ ​Scalable messaging solutions for microservices.​

​12. Proxmox VE​

​Proxmox​ ​was​ ​used​ ​for​ ​virtualization​ ​and​ ​VM​ ​management,​ ​including​ ​creation​ ​of​ ​VM​

​templates and running Linux containers (LXC).​

​Key Use Cases:​

​●​ ​Hosting Kubernetes clusters and database nodes in VMs.​

​●​ ​VM backup to S3 using DigitalOcean-compatible buckets.​

​3.5. Tasks / Activities Performed​
​3.5.1. Integrated HashiCorp Vault For secret management of Kubernetes Pods.​

​In​ ​this​ ​task,​ ​I​ ​have​ ​installed​ ​and​ ​set​ ​up​ ​a​ ​hashicorp​ ​vault​ ​in​ ​k8s​ ​cluster​ ​to​ ​manage​

​kubernetes secrets for advanced security. Steps I followed:​

​Added helm repo for hashicorp and installed vault using helm releases:​

​-​ ​helm repo add hashicorp https://helm.releases.hashicorp.com​

​-​ ​helm repo update​

​-​ ​helm install vault hashicorp/vault -n vault -f vault-values.yaml​

​vault-values.yaml​

​server:​

​31​

​ha:​

​enabled: true​

​replicas: 2​

​raft:​

​enabled: true​

​config: |​

​ui = true​

​listener "tcp" {​

​address = "0.0.0.0:8200"​

​cluster_address = "0.0.0.0:8201"​

​tls_disable = 1​

​}​

​storage "raft" {​

​path = "/vault/data"​

​}​

​service_registration "kubernetes" {}​

​dataStorage:​

​enabled: true​

​size: 10Gi​

​storageClass: "local-path"​

​extraEnvironmentVars:​

​VAULT_LOG_LEVEL: "debug"​

​injector:​

​enabled: true​

​ui:​

​enabled: true​

​Create policy for access to secrets of hashicorp vault:​

​path “secret/data/mysql” { capabilities = [”create”, “update”, “read”, “delete”, “list”]​

​}​

​path “secret/data/frontend” { capabilities = [”create”, “update”, “read”, “delete”, “list”]​

​}​

​path “secret/metadata/mysql” { capabilities = [“list”]​

​}​

​Created Role and policy is attached to the role:​

​32​

​kubectl​ ​exec​ ​-n​ ​vault​ ​-it​ ​vault-0​ ​—​ ​vault​ ​write​ ​auth/kubernetes/role/vault-role​ ​\​

​bound_service_account_names=vault-auth \​

​bound_service_account_namespaces=”webapps” \​

​policies=myapp-policy \​

​ttl=24h​

​Now​​I​​have​​created​​the​​service​​account​​and​​attached​​the​​role​​to​​the​​service​​account​​so​​that​

​the​ ​pod​ ​associated​ ​with​ ​the​ ​service​ ​account​ ​can​ ​get​ ​access​ ​to​ ​the​ ​secrets​ ​stored​ ​in​ ​the​

​vault.​

​apiVersion: v1​

​kind: ServiceAccount​

​metadata: name: vault-auth​

​namespace: webapps​

​Now​ ​used​ ​the​ ​annotations​ ​to​ ​the​ ​deployment​ ​so​ ​that​ ​the​ ​pod​ ​can​ ​get​ ​and​ ​use​ ​the​

​secrets:​

​annotations:​

​vault.hashicorp.com/agent-inject:​​“true”​

​vault.hashicorp.com/role:​​“vault-role”​

​vault.hashicorp.com/agent-inject-secret-MYSQL_ROOT_PASSWORD:​​“secret/mysql”​

​vault.hashicorp.com/agent-inject-template-MYSQL_ROOT_PASSWORD:​​|​

​{{- with secret “secret/mysql” -}}​

​export​ ​MYSQL_ROOT_PASSWORD=”{{​ ​.Data.data.MYSQL_ROOT_PASSWORD​

​}}”​

​{{- end }}​

​3.5.2. Deployed Portainer for container management.​

​During​ ​this​ ​task,​ ​Portainer​​was​​deployed​​on​​local​​host​​machines​​to​​provide​​a​​graphical​

​interface for managing Docker containers and resources running on the local system.​

​Portainer​ ​is​ ​a​ ​lightweight,​ ​open-source​ ​container​ ​management​ ​tool​ ​that​ ​simplifies​

​container​ ​operations​ ​such​ ​as​ ​monitoring,​ ​creating,​ ​starting,​ ​stopping,​ ​and​ ​removing​

​containers.​

​33​

http://vault.hashicorp.com/agent-inject:
http://vault.hashicorp.com/role:
http://vault.hashicorp.com/agent-inject-secret-MYSQL_ROOT_PASSWORD:
http://vault.hashicorp.com/agent-inject-template-MYSQL_ROOT_PASSWORD:

​Key Steps and Features:​

​●​ ​Pulled and deployed the official portainer/portainer-ce image using Docker.​

​●​ ​Exposed Portainer for local UI access.​

​●​ ​Used​ ​Portainer​ ​to:​ ​Monitor​ ​running​ ​containers​ ​and​ ​their​ ​resource​ ​usage​ ​(CPU,​

​memory,​ ​ports),Manage​ ​container​ ​lifecycle​​operations​​(start,​​stop,​​remove),​​view​

​container logs, networks, and volumes.​

​-​ ​$ docker volume create portainer_data​

​-​ ​$​ ​docker​ ​run​ ​-d​ ​-p​​8000:8000​​-p​​9443:9443​​--name​​portainer​​--restart=always​​-v​

​/var/run/docker.sock:/var/run/docker.sock​ ​-v​ ​portainer_data:/data​

​portainer/portainer-ce:lts​

​-​ ​$ docker ps​

​Figure 3.16: Portainer Dashboard for container management​

​3.5.3. Setup Scylla DB Cluster.​

​As​​part​​of​​this​​task,​​a​​ScyllaDB​​NoSQL​​database​​cluster​​was​​set​​up​​on​​multiple​​virtual​

​machines​ ​to​ ​provide​ ​a​ ​highly​ ​available,​ ​horizontally​ ​scalable​ ​backend​ ​for​ ​applications​

​requiring​ ​low-latency​ ​and​ ​high-throughput​ ​data​ ​access.​ ​The​ ​deployment​ ​focused​ ​on​

​creating​ ​a​ ​basic​ ​multi-node​ ​cluster​ ​with​​replication​​and​​internal​​communication​​enabled​

​between the nodes.​

​34​

​Key Steps and Configuration:​

​●​ ​Provisioned​ ​two​ ​Linux-based​ ​virtual​ ​machines​ ​with​ ​private​ ​and​ ​public​ ​IP​

​addresses for the ScyllaDB nodes.​

​●​ ​Installed the latest ScyllaDB Enterprise/Open Source version on both VMs.​

​●​ ​Configured​ ​scylla.yaml​ ​on​ ​each​ ​node​ ​to:​ ​Assign​ ​cluster​ ​name​ ​and​ ​seed​ ​nodes,​

​Bind to the correct IP address, Enable gossip protocol for node discovery​

​●​ ​Started​ ​Scylla​​services​​on​​both​​nodes​​and​​verified​​cluster​​formation​​via​​nodetool​

​status.​

​Steps:-​

​-​ ​sudo mkdir -p /etc/apt/keyrings​

​-​ ​sudo​ ​gpg​ ​--homedir​ ​/tmp​ ​--no-default-keyring​ ​--keyring​

​/etc/apt/keyrings/scylladb.gpg​ ​--keyserver​ ​hkp://keyserver.ubuntu.com:80​

​--recv-keys a43e06657bac99e3​

​-​ ​sudo wget -O /etc/apt/sources.list.d/scylla.list​

​-​ ​http://downloads.scylladb.com/deb/debian/scylla-2025.1.list​

​-​ ​sudo apt-get update​

​-​ ​sudo apt-get install -y scylla​

​-​ ​sudo apt-get update​

​-​ ​sudo apt-get install -y openjdk-11-jre-headless​

​-​ ​sudo update-java-alternatives --jre-headless -s java-1.11.0-openjdk-amd64​

​-​ ​Configure and Run ScyllaDB​

​Configure the following parameters in the /etc/scylla/scylla.yaml configuration file.​

​-​ ​cluster_name - <Name>​

​-​ ​seeds - The IP address of the first node​

​-​ ​listen_address​​-​​The​​IP​​address​​that​​ScyllaDB​​uses​​to​​connect​​to​​other​​nodes​​in​​the​

​cluster.​

​-​ ​rpc_address - The IP address of the interface for CQL client connections.​

​-​ ​sudo scylla_setup​

​-​ ​sudo systemctl start scylla-server​

​-​ ​nodetool status​

​35​

​Figure 3.17: Verifying the status of the scylla db cluster​

​3.5.4. Minio For Object Based Storage.​

​As​ ​part​ ​of​ ​this​ ​task,​ ​MinIO​ ​was​ ​deployed​ ​on​ ​a​ ​local​ ​Linux​ ​host​ ​to​ ​serve​ ​as​ ​a​

​high-performance,​ ​S3-compatible​ ​object​ ​storage​ ​system,​ ​enabling​ ​structured​ ​and​

​unstructured​ ​data​ ​storage,​ ​such​ ​as​ ​files,​ ​backups,​ ​and​ ​application​ ​assets.​ ​Additionally,​

​bucket-level​ ​replication​ ​was​ ​configured​ ​so​ ​that​ ​objects​ ​uploaded​ ​to​ ​one​ ​bucket​ ​are​

​automatically replicated to another, simulating a high-availability or backup-ready setup.​

​i) Installation and Setup​

​MinIO was installed in standalone mode using the official Linux binary:​

​●​ ​A dedicated directory (~/minio) was created for storage.​

​MinIO server was launched with:​

​minio server ~/minio --console-address :9001​

​●​ ​Accessed via:​

​○​ ​API: http://127.0.0.1:9000​

​○​ ​Console: http://127.0.0.1:9001​

​●​ ​Default​ ​credentials​ ​minioadmin:minioadmin​ ​were​ ​used​ ​during​ ​initial​ ​login​ ​and​

​later secured.​

​36​

​ii) Bucket Creation and Policy Setup​

​●​ ​Created two buckets:​

​○​ ​Source bucket: 00sauravnew​

​○​ ​Target bucket: 00sauravnewmain​

​●​ ​Applied​ ​a​ ​custom​ ​replication​ ​policy​ ​(replication-policy.json)​ ​using​ ​MinIO's​

​S3-compatible API.​

​●​ ​Granted​ ​necessary​ ​permissions​ ​in​ ​the​ ​policy​ ​for​ ​replication​ ​actions​ ​such​ ​as​

​s3:ReplicateObject, s3:PutObject, and s3:DeleteObject.​

​iii) Replication Configuration​

​Set up server-side replication using MinIO's built-in functionality:​

​●​ ​Defined a JSON-based replication policy that:​

​○​ ​Watches 00sauravnew (source)​

​○​ ​Automatically​ ​replicates​ ​all​ ​changes​ ​(put,​ ​delete,​ ​tags)​ ​to​

​00sauravnewmain (target)​

​●​ ​Applied the replication configuration using the mc (MinIO Client) or SDK.​

​Example snippet of replication policy:​

​{​

​"Effect": "Allow",​

​"Action": ["s3:ReplicateObject", "s3:ReplicateDelete", "s3:ReplicateTags"],​

​"Resource": ["arn:aws:s3:::00sauravnew/*"]​

​}​

​iv) Python SDK Integration and Automation​

​Developed a Python automation script (file_uploader.py) using MinIO Python SDK:​

​●​ ​Uploaded objects with custom metadata and tags.​

​●​ ​Enabled optional retention and legal hold policies.​

​●​ ​Automatically​ ​verified​ ​replication​ ​by​ ​listing​ ​objects​ ​in​ ​the​ ​target​ ​bucket​ ​after​

​upload.​

​●​ ​Generated pre-signed URLs for controlled public access to objects.​

​v) Monitoring and Administration via CLI​

​37​

​Installed the MinIO Client (mc):​

​●​ ​Used mc alias set to connect to the local MinIO instance.​

​Verified bucket and object replication using:​

​mc admin info local && mc ls local/00sauravnewmain​

​Figure 3.18: Verifying the files in the bucket​

​Figure 3.19: Verifying the bucket​

​38​

​Figure 3.20: Verifying the replication of files in a bucket​

​3.5.5. Deployed Envoy Gateway as Ingress Controller in RKE2 Kubernetes Cluster.​

​Envoy​​Gateway​​was​​deployed​​in​​an​​RKE2​​cluster​​to​​serve​​as​​a​​modern,​​scalable​​ingress​

​controller.​ ​Envoy​ ​Gateway​ ​provides​ ​dynamic​ ​traffic​ ​routing,​​security,​​observability,​​and​

​extensibility, making it ideal for cloud-native microservices architecture.​

​i) Helm-Based Deployment of Envoy Gateway​

​Envoy Gateway was installed using the official Helm chart from DockerHub:​

​helm install eg oci://docker.io/envoyproxy/gateway-helm \​

​--version v1.4.2 \​

​-n envoy-gateway-system \​

​--create-namespace​

​Key setup steps included:​

​●​ ​Created a dedicated namespace: envoy-gateway-system​

​●​ ​Installed​ ​the​ ​Gateway​ ​API​ ​CRDs​ ​(Custom​ ​Resource​ ​Definitions)​ ​for​ ​defining​

​GatewayClass, Gateway, and HTTPRoute​

​●​ ​Waited for the envoy-gateway deployment to become available and healthy​

​ii) Gateway Configuration​

​Applied the official quickstart.yaml to:​

​39​

​●​ ​Register the GatewayClass that specifies Envoy as the controller​

​●​ ​Create a Gateway resource that listens on port 80​

​●​ ​Define HTTPRoute objects to route incoming traffic to backend services​

​iii) CRDs and Advanced Installation Options​

​●​ ​Gateway​ ​API​ ​CRDs​ ​and​ ​Envoy​ ​Gateway-specific​ ​CRDs​ ​were​ ​installed​ ​with​

​fine-grained​ ​control​ ​using​ ​helm​ ​template​ ​and​ ​kubectl​ ​apply,​ ​to​ ​avoid​ ​Helm​

​limitations with large CRDs.​

​helm template eg oci://docker.io/envoyproxy/gateway-crds-helm \​

​--version v1.4.2 \​

​--set crds.gatewayAPI.enabled=true \​

​--set crds.gatewayAPI.channel=standard \​

​--set crds.envoyGateway.enabled=true | kubectl apply --server-side -f -​

​iv) Helm Customization and Resource Configuration​

​To optimize the deployment, a custom values.yaml file was used to:​

​●​ ​Increase CPU and memory limits for better performance​

​●​ ​Enable gRPC and rate-limiting ports for future extensibility​

​●​ ​Set logging level to debug for troubleshooting.​

​Figure 3.21: Lens Dashboard showing envoy gateway deployment​

​40​

​Chapter 4: Conclusion and Learning Outcomes​

​4.1. Conclusion​

​In​ ​conclusion,​ ​the​ ​internship​ ​at​ ​Smart​ ​Ideas​ ​Pvt.Ltd​ ​(Hamro​ ​Patro)​ ​as​​a​​DevOps​
​Intern​ ​exposed​​me​​to​​various​​aspects​​of​​DevOps.​​The​​internship​​has​​been​​a​​valuable​
​and​ ​enriching​ ​experience,​ ​allowing​ ​me​ ​to​ ​apply​ ​the​ ​theoretical​ ​knowledge​ ​gained​
​throughout​ ​my​ ​academic​ ​journey​ ​into​ ​a​ ​real-world​ ​software​ ​development​
​environment.​ ​This​ ​included​ ​knowledge​ ​gained​ ​in​ ​diverse​ ​DevOps​ ​areas​ ​like​
​deployment​ ​of​ ​websites​ ​with​ ​SSL/TLS​ ​certificate,​ ​Virtual​ ​Machine​ ​networking,​
​containerization​ ​and​ ​utilizing​ ​Kubernetes​ ​(K3s,​ ​RKE2)​ ​for​ ​container​ ​orchestration,​
​implementation of monitoring tools such as Prometheus and Grafana.​

​Practical​​tasks​​were​​done​​using​​theoretical​​knowledge​​acquired​​from​​the​​program.​​At​
​the​ ​end​ ​of​ ​it​ ​all,​ ​adopting​ ​different​ ​DevOps​ ​methodologies​ ​that​ ​were​​learnt​​brought​
​about​ ​better​ ​system​ ​performance​ ​and​ ​reliability.​ ​With​ ​the​ ​help​​of​​mentors​​and​​other​
​colleagues,​ ​my​ ​interpersonal​​skills​​were​​also​​sharpened​​during​​this​​internship​​period​
​henceforth having a huge positive influence on me both professionally and personally.​

​4.2. Learning Outcome​

​Here are the key areas where I gained substantial knowledge and practical experience:​

​1.​ ​Technical Skills​

​Developed​ ​my​ ​technical​ ​skills​ ​like​ ​operating​ ​system​ ​troubleshooting,​ ​managing​
​bare​​ ​metal​ ​infrastructure,​ ​automating​ ​repeated​ ​tasks​ ​with​ ​bash​ ​script.​ ​Got​ ​the​
​opportunity​​to​​dig​​deep​​into​​using​​linux​​command​​line​​as​​well​​as​​monitoring​​tools​
​like​​monit,​​prometheus,​​and​​grafana.​​Learned​​about​​monitoring​​various​​processes​
​of​ ​linux​ ​and​ ​sending​ ​email​ ​alerts​ ​if​ ​needed.​ ​Along​ ​with​ ​this​ ​various​ ​other​​tools​
​like ansible, used for DevOps were learned.​

​2.​ ​Professional Development​

​Enhanced​​the​​ability​​to​​work​​effectively​​in​​a​​team​​oriented​​environment.​​Problem​
​solving​ ​skills​ ​were​ ​improved​ ​by​ ​addressing​ ​real​world​ ​technical​ ​challenges​ ​and​
​implementing​ ​practical​ ​solutions.​ ​Professional​ ​growth​ ​was​​further​​shaped​​by​​the​
​mentorship and guidance received from experienced professionals.​

​41​

​3.​ ​Time Management​

​Effective​ ​time​ ​management​ ​was​ ​crucial​ ​during​ ​the​ ​internship,​ ​as​ ​multiple​​tasks​
​were​ ​assigned​ ​simultaneously.​ ​Work​ ​was​ ​prioritized,​ ​achievable​ ​goals​​were​​set,​
​and deadlines were consistently met.​

​4.​ ​Documentation​

​The​ ​importance​ ​of​ ​thorough​ ​documentation​ ​was​ ​emphasized​ ​throughout​ ​the​

​internship.​​Detailed​​records​​of​​configurations,​​processes,​​and​​performance​​metrics​

​were​ ​main​tained,​ ​ensuring​ ​transparency​ ​and​ ​reproducibility.​ ​Comprehensive​

​reports​ ​and​ ​documentation​ ​were​ ​compiled​ ​to​ ​communicate​ ​project​ ​progress,​

​improving technical writing and communication skills.​

​5.​ ​Continuous Learning​

​A​​habit​​of​​continuous​​learning​​was​​cultivated​​during​​the​​internship,​​encouraging​
​the​ ​intern​ ​to​​stay​​updated​​with​​the​​latest​​industry​​trends​​and​​advancements.​​Self​
​Directed​​learning​​was​​regularly​​engaged​​in,​​exploring​​new​​tools​​and​​technologies​
​to enhance existing systems and processes​

​42​

​References​

​Ebert, Christof, Gallardo, Gorka, Hernantes, et al. (2016). DevOps.​​IEEE Software​​,33(3),​
​94–100.​​https://doi.org/10.1109/MS.2016.68​

​Hamro Patro. (2010).​​About Hamro Patro.​​https://www.hamropatro.com/about​

​Farley, J., David;Humble. (2015).​ ​Continuous​ ​Delivery: Reliable Software Releases​
​Through​ ​Build,​ ​Test,​ ​and​ ​Deployment​ ​Automation​ ​)​ ​(Tenth​ ​printing,​ ​Vol.​ ​0).​
​AddisonWesley Professional.​

​KALEN WESSE, D. &. S. (2018).​​A Day in the Life of​​a DevOps Engineer.​

​Len Bass,L. Z.,Ingo Weber. (2015). DevOps:​​A Software​​Architect’s Perspective​​(1st ed.,​
​Vol. 0). Addison​Wesley Professional.​

​N, S. (2020). Automation of Software Development using DevOps and its Benefits.​
​International Journal of Engineering Research and, .​
​https://doi.org/10.17577/IJERTV9IS060369​

​Senapathi, M., Buchan, J., & Osman, H. (2019). DevOps Capabilities, Practices, and​
​Challenges: Insights from a Case Study.​​Corr.​​http://arxiv.org/abs/1907.10201​

​43​

https://doi.org/10.1109/MS.2016.68
https://www.hamropatro.com/about
https://doi.org/10.17577/IJERTV9IS060369

​Appendices​

​Deployed website with nginx and custom domain setup​

​Linode Cloud VM Resources Usage​

​44​

​Rancher UI for a Cluster Dashboard​

​Spacelift Dashboard For Infrastructure Creation and Configuration in AWS​

​45​

​Hashicorp Vault UI showing stored secrets​

​AWS Console showing different EC2 server for different services​

​46​

